Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 19(5): e0300644, 2024.
Article in English | MEDLINE | ID: mdl-38758826

ABSTRACT

Mechanisms underlying primary and acquired resistance to MET tyrosine kinase inhibitors (TKIs) in managing non-small cell lung cancer remain unclear. In this study, we investigated the possible mechanisms acquired for crizotinib in MET-amplified lung carcinoma cell lines. Two MET-amplified lung cancer cell lines, EBC-1 and H1993, were established for acquired resistance to MET-TKI crizotinib and were functionally elucidated. Genomic and transcriptomic data were used to assess the factors contributing to the resistance mechanism, and the alterations hypothesized to confer resistance were validated. Multiple mechanisms underlie acquired resistance to crizotinib in MET-amplified lung cancer cell lines. In EBC-1-derived resistant cells, the overexpression of SERPINE1, the gene encoding plasminogen activator inhibitor-1 (PAI-1), mediated the drug resistance mechanism. Crizotinib resistance was addressed by combination therapy with a PAI-1 inhibitor and PAI-1 knockdown. Another mechanism of resistance in different subline cells of EBC-1 was evaluated as epithelial-to-mesenchymal transition with the upregulation of antiapoptotic proteins. In H1993-derived resistant cells, MEK inhibitors could be a potential therapeutic strategy for overcoming resistance with downstream mitogen-activated protein kinase pathway activation. In this study, we revealed the different mechanisms of acquired resistance to the MET inhibitor crizotinib with potential therapeutic application in patients with MET-amplified lung carcinoma.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Crizotinib , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Lung Neoplasms , Plasminogen Activator Inhibitor 1 , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-met , Humans , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Crizotinib/pharmacology , Crizotinib/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic/drug effects
3.
J Mol Med (Berl) ; 101(12): 1603-1614, 2023 12.
Article in English | MEDLINE | ID: mdl-37831111

ABSTRACT

Cancer-associated fibroblasts (CAFs) are important components in the tumor microenvironment, and we sought to identify effective therapeutic targets in CAFs for non-small cell lung cancer (NSCLC). In this study, we established fibroblast cell lines from the cancerous and non-cancerous parts of surgical lung specimens from patients with NSCLC and evaluated the differences in behaviors towards NSCLC cells. RNA sequencing analysis was performed to investigate the differentially expressed genes between normal fibroblasts (NFs) and CAFs, and we identified that the expression of periostin (POSTN), which is known to be overexpressed in various solid tumors and promote cancer progression, was significantly higher in CAFs than in NFs. POSTN increased cell proliferation via NSCLC cells' ERK pathway activation and induced epithelial-mesenchymal transition (EMT), which improved migration in vitro. In addition, POSTN knockdown in CAFs suppressed these effects, and in vivo experiments demonstrated that the POSTN knockdown improved the sensitivity of EGFR-mutant NSCLC cells for osimertinib treatment. Collectively, our results showed that CAF-derived POSTN is involved in tumor growth, migration, EMT induction, and drug resistance in NSCLC. Targeting CAF-secreted POSTN could be a potential therapeutic strategy for NSCLC. KEY MESSAGES: • POSTN is significantly upregulated in CAFs compared to normal fibroblasts in NCSLC. • POSTN increases cell proliferation via activation of the NSCLC cells' ERK pathway. • POSTN induces EMT in NSCLC cells and improves the migration ability. • POSTN knockdown improves the sensitivity for osimertinib in EGFR-mutant NSCLC cells.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Drug Resistance , ErbB Receptors/metabolism , Fibroblasts/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Tumor Microenvironment/genetics
4.
Cancer Sci ; 113(10): 3428-3436, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35871750

ABSTRACT

Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment that mediate resistance of cancer cells to anticancer drugs. Tranilast is an antiallergic drug that suppresses the release of cytokines from various inflammatory cells. In this study, we investigated the inhibitory effect of tranilast on the interactions between non-small cell lung cancer (NSCLC) cells and the CAFs in the tumor microenvironment. Three EGFR-mutant NSCLC cell lines, two KRAS-mutant cell lines, and three CAFs derived from NSCLC patients were used. To mimic the tumor microenvironment, the NSCLC cells were cocultured with the CAFs in vitro, and the molecular profiles and sensitivity to molecular targeted therapy were assessed. Crosstalk between NSCLC cells and CAFs induced multiple biological effects on the NSCLC cells both in vivo and in vitro, including activation of the STAT3 signaling pathway, promotion of xenograft tumor growth, induction of epithelial-mesenchymal transition (EMT), and acquisition of resistance to molecular-targeted therapy, including EGFR-mutant NSCLC cells to osimertinib and of KRAS-mutant NSCLC cells to selumetinib. Treatment with tranilast led to inhibition of IL-6 secretion from the CAFs, which, in turn, resulted in inhibition of CAF-induced phospho-STAT3 upregulation. Tranilast also inhibited CAF-induced EMT in the NSCLC cells. Finally, combined administration of tranilast with molecular-targeted therapy reversed the CAF-mediated resistance of the NSCLC cells to the molecular-targeted drugs, both in vitro and in vivo. Our results showed that combined administration of tranilast with molecular-targeted therapy is a possible new treatment strategy to overcome drug resistance caused by cancer-CAF interaction.


Subject(s)
Anti-Allergic Agents , Antineoplastic Agents , Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Anti-Allergic Agents/metabolism , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Drug Repositioning , Epithelial-Mesenchymal Transition , ErbB Receptors , Humans , Interleukin-6/metabolism , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Microenvironment , ortho-Aminobenzoates
SELECTION OF CITATIONS
SEARCH DETAIL
...