Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 14(1): 15047, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951576

ABSTRACT

Pink bollworm (PBW) Pectinophora gossypiella is an important pest cotton worldwide. There are multiple factors which determines the occurrence and distribution of P. gossypiella across different cotton growing regions of the world, and one such key factor is 'temperature'. The aim was to analyze the life history traits of PBW across varying temperature conditions. We systematically explored the biological and demographic parameters of P. gossypiella at five distinct temperatures; 20, 25, 30, 35 and 40 ± 1 °C maintaining a photoperiod of LD 16:8 h. The results revealed that the total developmental period of PBW shortens with rising temperatures, and the highest larval survival rates were observed between 30 °C and 35 °C, reaching 86.66% and 80.67%, respectively. Moreover, significant impacts were observed as the pupal weight, percent mating success, and fecundity exhibited higher values at 30 °C and 35 °C. Conversely, percent egg hatching, larval survival, and adult emergence were notably lower at 20 °C and 40 °C, respectively. Adult longevity decreased with rising temperatures, with females outliving males across all treatments. Notably, thermal stress had a persistent effect on the F1 generation, significantly affecting immature stages (egg and larvae), while its impact on reproductive potential was minimal. These findings offer valuable insights for predicting the population dynamics of P. gossypiella at the field level and developing climate-resilient management strategies in cotton.


Subject(s)
Larva , Temperature , Animals , Larva/physiology , Female , Male , Gossypium/parasitology , Lepidoptera/physiology , Lepidoptera/growth & development , Fertility/physiology , Moths/physiology , Moths/growth & development , Longevity/physiology , Pupa/physiology , Pupa/growth & development
2.
Front Plant Sci ; 14: 1237795, 2023.
Article in English | MEDLINE | ID: mdl-37780514

ABSTRACT

Fungicidal application has been the common and prime option to combat fruit rot disease (FRD) of arecanut (Areca catechu L.) under field conditions. However, the existence of virulent pathotypes, rapid spreading ability, and improper time of fungicide application has become a serious challenge. In the present investigation, we assessed the efficacy of oomycete-specific fungicides under two approaches: (i) three fixed timings of fungicidal applications, i.e., pre-, mid-, and post-monsoon periods (EXPT1), and (ii) predefined different fruit stages, i.e., button, marble, and premature stages (EXPT2). Fungicidal efficacy in managing FRD was determined from evaluations of FRD severity, FRD incidence, and cumulative fallen nut rate (CFNR) by employing generalized linear mixed models (GLMMs). In EXPT1, all the tested fungicides reduced FRD disease levels by >65% when applied at pre- or mid-monsoon compared with untreated control, with statistical differences among fungicides and timings of application relative to infection. In EXPT2, the efficacy of fungicides was comparatively reduced when applied at predefined fruit/nut stages, with statistically non-significant differences among tested fungicides and fruit stages. A comprehensive analysis of both experiments recommends that the fungicidal application can be performed before the onset of monsoon for effective management of arecanut FRD. In conclusion, the timing of fungicidal application based on the monsoon period provides better control of FRD of arecanut than an application based on the developmental stages of fruit under field conditions.

3.
Insects ; 13(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36135510

ABSTRACT

Exudation of mucilage from pinhead-sized boreholes in cocoa pods was recorded in Karnataka, India, during 2021. Further investigations showed the association of scolytine beetles with infested pods. The identity of the pest, Xylosandrus crassiusculus, was confirmed through morphological characterization and sequencing of the mitochondrial COI gene. We studied the predisposing factors for its infestation, visible and concealed damaging symptoms, and fungal symbionts. In addition to its well-known symbiotic fungus, Ambrosiella roeperi, a new association of yeast, Ambrosiozyma monospora, was discovered. We also traced the possible role of the mirid bug, Helopeltis theivora, in host selection by X. crassiusculus. Overall results indicated that a 'mirid bug-ambrosia beetle-pathogen complex' is responsible for the severe damage to cocoa pods in South India.

4.
Saudi J Biol Sci ; 29(8): 103341, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35813115

ABSTRACT

An oomycetous fungus Phytophthora causing fruit rot is the most devastating disease of arecanut in different agro-climatic zones of Karnataka with varied climatic profiles. The main aim of this investigation was to characterize the geo-distant Phytophthora populations infecting arecanut using robust morphological, multi-gene phylogeny and haplotype analysis. A total of 48 geo-distant fruit rot infected samples were collected during the South-West monsoon of 2017-19. Pure culture of the suspected pathogen was isolated from the infected nuts and pathogenic ability was confirmed and characterized. Colony morphology revealed typical whitish mycelium with stellate or petalloid pattern and appearance with torulose hyphae. Sporangia were caducous, semipapillate or papillate, globose, ellipsoid or ovoid-obpyriform in shape and sporangiophores were irregularly branched or simple sympodial in nature. Subsequent multi-gene phylogeny (ITS, ß-tub, TEF-1α and Cox-II) and sequence analysis confirmed the identity of oomycete as Phytophthora meadii which is predominant across the regions studied. We identified 49 haplotypes representing the higher haplotype diversity with varying relative haplotype frequency. Comprehensive study confirmed the existence of substantial variability among geo-distant populations (n = 48) of P. meadii. The knowledge on population dynamics of the pathogen causing fruit rot of arecanut generated from this investigation would aid in developing appropriate disease management strategies to curtail its further occurrence and spread in arecanut ecosystem.

5.
Insects ; 13(1)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35055909

ABSTRACT

Xylosandrus crassiusculus (Coleoptera: Curculionidae: Scolytinae) is reported causing damage to areca palm plantations (Areca catechu L.-Arecaceae) in Karnataka (India). In particular, X. crassiusculus has been observed attacking and successfully reproducing on areca nuts; besides the new host plant record, the data provided here represent the first documented case of spermatophagy for this xyleborine beetle. All infestation symptoms of this polyphagous pest were documented and illustrated. The identity of the scolytid, besides morphologically, was confirmed by its DNA barcoding. Eggs, larvae and pupae were found within the galleries of infested kernels. All galleries of the infested kernels were characterized by the presence of whitish to greyish fungal growth. The fungus was identified as Ambrosiella roeperi, a known symbiont of Xylosandrus crassiusculus. Incidence of this symbiotic insect-fungus complex in the economic part of arecanut, i.e., the kernel, is of serious concern. In a climate change scenario, this beetle with fungal symbionts may pose a serious threat to arecanut production in India and elsewhere.

SELECTION OF CITATIONS
SEARCH DETAIL
...