Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(5): 104287, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35573198

ABSTRACT

Antiandrogen treatment resistance is a major clinical concern in castration-resistant prostate cancer (CRPC) treatment. Using xenografts of VCaP cells we showed that growth of antiandrogen resistant CRPC tumors were characterized by a higher intratumor dihydrotestosterone (DHT) concentration than that of treatment responsive tumors. Furthermore, the slow tumor growth after adrenalectomy was associated with a low intratumor DHT concentration. Reactivation of androgen signaling in enzalutamide-resistant tumors was further shown by the expression of several androgen-dependent genes. The data indicate that intratumor DHT concentration and expression of several androgen-dependent genes in CRPC lesions is an indication of enzalutamide treatment resistance and an indication of the need for further androgen blockade. The presence of an androgen synthesis, independent of CYP17A1 activity, has been shown to exist in prostate cancer cells, and thus, novel androgen synthesis inhibitors are needed for the treatment of enzalutamide-resistant CRPC tumors that do not respond to abiraterone.

2.
Prostate ; 81(8): 452-462, 2021 06.
Article in English | MEDLINE | ID: mdl-33822400

ABSTRACT

BACKGROUND: Prostate cancer (PC) metastasizes to the skeleton forming predominantly sclerotic lesions, and there is currently no cure for bone metastatic disease. The transcription factor signal transducer and activator of transcription 3 (STAT3) is implicated as a metastatic driver, but its potential as therapeutic target in bone metastasis has not been investigated. In this study, we evaluated for the first time a STAT3 inhibitor, Napabucasin, as a therapeutic option for bone metastatic PC. METHODS: Effects of STAT3 inhibitors, Stattic and Napabucasin, on metastatic potential in PC cells were studied in vitro by assessment of migration capacity, self-renewal potential, and tumorsphere formation. For evaluation of the role of STAT3 in initial skeletal establishment of PC cells as well as in progressed castration-resistant PC (CRPC) in bone, human VCaP prostate cancer cells were inoculated in the tibia of mice which subsequently were treated with the STAT3 inhibitor Napabucasin. Bone specimens were analyzed using computed tomography (CT), immunohistochemistry, and quantitative polymerase chain reaction. RESULTS: The small molecule STAT3 inhibitors Stattic and Napabucasin both effectively impaired metastatic potential of PC cells in vitro. Furthermore, treatment with Napabucasin prevented metastatic establishment in tibial bones in vivo and thereby also the tumor-induced sclerotic bone response seen in vehicle-treated VCaP xenografts. In addition, treatment with Napabucasin of established bone CRPC significantly decreased both tumor burden and tumor-induced trabecular bone volume compared with effects seen in vehicle-treated animals. Anti-mitotic effects were confirmed by decreased Ki67 staining in Napabucasin-treated xenografts compared with vehicle-treated xenografts. Alterations of gene expression in the femoral bone marrow (BM) niche toward the maintenance of hematopoietic stem cells and the myeloid lineage were demonstrated by quantitative real-time polymerase chain reaction and were further reflected by a substantial increase in the number of erythrocytes in BM of Napabucasin-treated mice. Furthermore, a unique pattern of STAT3 phosphorylation in osteoblasts/stromal cells surrounding the areas of tumor cells was demonstrated immunohistochemically in bone xenograft models using several different PC cell lines. CONCLUSION: Inhibition of STAT3 activity disrupts the bone metastatic niche and targets both the skeletal establishment of PC and advanced bone metastatic CRPC in mice, suggesting STAT3 as a candidate for molecular targeted therapies of skeletal metastatic disease.


Subject(s)
Benzofurans/pharmacology , Bone Neoplasms/secondary , Cell Proliferation/drug effects , Cyclic S-Oxides/pharmacology , Naphthoquinones/pharmacology , Prostatic Neoplasms/pathology , STAT3 Transcription Factor/antagonists & inhibitors , Tibia/pathology , Animals , Cell Line, Tumor , Male , Mice , Tibia/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...