Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 810373, 2022.
Article in English | MEDLINE | ID: mdl-35712577

ABSTRACT

The genomes of an elite rice restorer line KMR3 (salinity-sensitive) and its salinity-tolerant introgression line IL50-13, a popular variety of coastal West Bengal, India, were sequenced. High-quality paired-end reads were obtained for KMR3 (147.6 million) and IL50-13 (131.4 million) with a sequencing coverage of 30X-39X. Scaffolds generated from the pre-assembled contigs of each sequenced genome were mapped separately onto the reference genome of Oryza sativa ssp. japonica cultivar Nipponbare to identify genomic variants in terms of SNPs and InDels. The SNPs and InDels identified for KMR3 and IL50-13 were then compared with each other to identify polymorphic SNPs and InDels unique and common to both the genomes. Functional enrichment analysis of the protein-coding genes with unique InDels identified GO terms involved in protein modification, ubiquitination, deubiquitination, peroxidase activity, and antioxidant activity in IL50-13. Linoleic acid metabolism, circadian rhythm, and alpha-linolenic acid metabolism pathways were enriched in IL50-13. These GO terms and pathways are involved in reducing oxidative damage, thus suggesting their role in stress responses. Sequence analysis of QTL markers or genes known to be associated with grain yield and salinity tolerance showed polymorphism in 20 genes, out of which nine were not previously reported. These candidate genes encoded Nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC) domain-containing protein, cyclase, receptor-like kinase, topoisomerase II-associated protein PAT1 domain-containing protein, ion channel regulatory protein, UNC-93 domain-containing protein, subunit A of the heteromeric ATP-citrate lyase, and three conserved hypothetical genes. Polymorphism was observed in the coding, intron, and untranslated regions of the genes on chromosomes 1, 2, 4, 7, 11, and 12. Genes showing polymorphism between the two genomes were considered as sequence-based new candidates derived from Oryza rufipogon for conferring high yield and salinity tolerance in IL50-13 for further functional studies.

2.
Sci Rep ; 10(1): 4873, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32184449

ABSTRACT

In this study, we compared genome-wide transcriptome profile of two rice hybrids, one with (test hybrid IR79156A/IL50-13) and the other without (control hybrid IR79156A/KMR3) O. rufipogon introgressions to identify candidate genes related to grain yield in the test hybrid. IL50-13 (Chinsurah Nona2 IET21943) the male parent (restorer) used in the test hybrid, is an elite BC4F8 introgression line of KMR3 with O. rufipogon introgressions. We identified 2798 differentially expressed genes (DEGs) in flag leaf and 3706 DEGs in panicle. Overall, 78 DEGs were within the major yield QTL qyld2.1 and 25 within minor QTL qyld8.2. The DEGs were significantly (p < 0.05) enriched in starch synthesis, phenyl propanoid pathway, ubiquitin degradation and phytohormone related pathways in test hybrid compared to control hybrid. Sequence analysis of 136 DEGs from KMR3 and IL50-13 revealed 19 DEGs with SNP/InDel variations. Of the 19 DEGs only 6 showed both SNP and InDel variations in exon regions. Of these, two DEGs within qyld2.1, Phenylalanine ammonia- lyase (PAL) (Os02t0626400-01, OsPAL2) showed 184 SNPs and 11 InDel variations and Similar to phenylalanine ammonia- lyase (Os02t0627100-01, OsPAL4) showed 205 SNPs and 13 InDel variations. Both PAL genes within qyld2.1 and derived from O. rufipogon are high priority candidate genes for increasing grain yield in rice.


Subject(s)
Gene Expression Profiling/methods , Oryza/growth & development , Oryza/genetics , Quantitative Trait Loci , Edible Grain/genetics , Edible Grain/growth & development , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genetic Introgression , Genetic Variation , Plant Breeding , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/genetics , Exome Sequencing
3.
Front Behav Neurosci ; 12: 215, 2018.
Article in English | MEDLINE | ID: mdl-30297990

ABSTRACT

The role of Y chromosome in sex determination and male fertility is well established. It is also known that infertile men are prone to psychological disturbances. Earlier studies in the laboratory identified genes expressed in testes that are putatively regulated by Y chromosome in man and mouse. With the availability of a Y-deleted mouse model, that is subfertile, we studied the effect of a partial deletion of Y-chromosomal heterochromatin on mouse behavior when compared to its wild type. The partial Y-deleted mice exhibited anxiety like phenotype under stress when different anxiety (open field test and elevated plus maze, EPM test) and depression related tests (tail suspension and force swim) were performed. The mutant mice also showed reduction in hippocampal neurogenesis and altered expression of neurogenesis markers such as Nestin, Sox2, Gfap, NeuroD1 and Dcx using quantitative real time PCR (qPCR) analysis. The genes with altered expression contained short stretches of homology to Y-derived transcripts only in their Untranslated Regions (UTRs). Our study suggests putative regulation of these genes by the Y chromosome in mouse brain altering stress related behavior.

4.
BMC Genomics ; 13 Suppl 7: S19, 2012.
Article in English | MEDLINE | ID: mdl-23281791

ABSTRACT

BACKGROUND: A number of apicomplexan genomes have been sequenced successfully in recent years and this would help in understanding the biology of apicomplexan parasites. The members of the phylum Apicomplexa are important protozoan parasites (Plasmodium, Toxoplasma and Cryptosporidium etc) that cause some of the deadly diseases in humans and animals. In our earlier studies, we have shown that the standard BLOSUM matrices are not suitable for compositionally biased apicomplexan proteins. So we developed a novel series (SMAT and PfFSmat60) of substitution matrices which performed better in comparison to standard BLOSUM matrices and developed ApicoAlign, a sequence search and alignment tool for apicomplexan proteins. In this study, we demonstrate the higher specificity of these matrices and make an attempt to improve the annotation of apicomplexan kinases and proteases. RESULTS: The ROC curves proved that SMAT80 performs best for apicomplexan proteins followed by compositionally adjusted BLOSUM62 (PSI-BLAST searches), BLOSUM90 and BLOSUM62 matrices in terms of detecting true positives. The poor E-values and/or bit scores given by SMAT80 matrix for the experimentally identified coccidia-specific oocyst wall proteins against hematozoan (non-coccidian) parasites further supported the higher specificity of the same. SMAT80 uniquely detected (missed by BLOSUM) orthologs for 1374 apicomplexan hypothetical proteins against SwissProt database and predicted 70 kinases and 17 proteases. Further analysis confirmed the conservation of functional residues of kinase domain in one of the SMAT80 detected kinases. Similarly, one of the SMAT80 detected proteases was predicted to be a rhomboid protease. CONCLUSIONS: The parasite specific substitution matrices have higher specificity for apicomplexan proteins and are helpful in detecting the orthologs missed by BLOSUM matrices and thereby improve the annotation of apicomplexan proteins which are hypothetical or with unknown function.


Subject(s)
Apicomplexa/metabolism , Protozoan Proteins/metabolism , Software , Amino Acid Sequence , Animals , Area Under Curve , Databases, Protein , Humans , Internet , Molecular Sequence Data , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , ROC Curve , Sequence Alignment , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...