Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Nano Lett ; 23(17): 7883-7889, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37579260

ABSTRACT

Molecular-level spectroscopy is crucial for sensing and imaging applications, yet detecting and quantifying minuscule quantities of chemicals remain a challenge, especially when they surface adsorb in low numbers. Here, we introduce a photothermal spectroscopic technique that enables the high selectivity sensing of adsorbates with an attogram detection limit. Our approach utilizes the Seebeck effect in a microfabricated nanoscale thermocouple junction, incorporated into the apex of a microcantilever. We observe minimal thermal mass exhibited by the sensor, which maintains exceptional thermal insulation. The temperature variation driving the thermoelectric junction arises from the nonradiative decay of molecular adsorbates' vibrational states on the tip. We demonstrate the detection of photothermal spectra of physisorbed trinitrotoluene (TNT) and dimethyl methylphosphonate (DMMP) molecules, as well as representative polymers, with an estimated mass of 10-18 g.

2.
ACS Appl Mater Interfaces ; 15(4): 5439-5448, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36668703

ABSTRACT

Hydrogen (H2), as a chemical energy carrier, is a cleaner alternative to conventional fossil fuels with zero carbon emission and high energy density. The development of fast, low-cost, and sensitive H2 detection systems is important for the widespread adoption of H2 technologies. Paper is an environment-friendly, porous, and flexible material with great potential for use in sustainable electronics. Here, we report a paper-based sensor for room-temperature H2 detection using ultrathin palladium nanowires (PdNWs). To elucidate the sensing mechanism, we compare the performance of polycrystalline and quasi-single-crystalline PdNWs. The polycrystalline PdNWs showed a response of 4.3% to 1 vol % H2 with response and recovery times of 4.9 and 10.6 s, while quasi-single-crystalline PdNWs showed a response of 8% to 1 vol % H2 with response and recovery times of 9.3 and 13.0 s, respectively. The polycrystalline PdNWs show excellent selectivity, stability, and sensitivity, with a limit of detection of 10 ppm H2 in air. The fast response of ultrathin polycrystalline PdNW paper-based sensors arises from the synergistic effects of their ultrasmall diameter, high-index surface facets, strain-coupled grain boundaries, and porous paper substrate. This paper-based sensor is one of the fastest chemiresistive H2 sensors reported and is potentially orders of magnitude less expensive than current state-of-the-art H2-sensing solutions. This brings low-cost, room-temperature chemiresistive H2 sensing closer to the performance of ultrafast optical sensors and high-temperature metal oxide-based sensors.

3.
ACS Sens ; 7(1): 225-234, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35025508

ABSTRACT

Palladium has long been explored for use in gas sensors because of its excellent catalytic properties and its unique property of forming hydrides in the presence of H2. However, pure Pd-based sensors usually suffer from low response and a relatively high limit of detection. Palladium nanosheets (PdNS) are of particular interest for gas sensing applications due to their high surface area and excellent electrical conductivity. Here, we demonstrate the design and fabrication of low-cost PdNS-based dual gas sensors for room-temperature detection of H2 and CO over a wide concentration range. We fabricated sensors using multiwalled carbon nanotube@PdNS (MWCNT@PdNS) composites and compared their performance against pure PdNS devices for hydrogen sensing based on electrical resistive response. Devices using PdNS alone had a response and response time of 0.4% and 50 s, respectively, to 1% H2 in air. MWCNT@PdNS (1:5 mass ratio) showed enhanced performance at a lower hydrogen concentration with a limit of detection (LODH2) of 5 ppm. Nearly an order of magnitude increase in response was observed on increasing the amount of MWCNT to 50 mass % in the nanocomposite, but the response fell off at low H2 concentration. Overall, these PdNS-based sensors were found to show good repeatability, stability, and performance under humid conditions. Their response was selective for H2versus CH4, CO2, and NH3; the response to CO was comparable in magnitude but opposite in sign to the response to H2. Upon simultaneous exposure to equal concentrations (10 ppm each) of H2 and CO, the response to CO was dominant. The PdNS showed high sensitivity to CO, detecting as little as 1 ppm CO in air at room temperature. The sensitivity to CO could be used either in a stand-alone room-temperature CO detector, where H2 is known not to be present, or in combination with CO and combustible gas detectors to distinguish H2 from other combustible gases.

4.
Sensors (Basel) ; 20(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198161

ABSTRACT

The bending resonance of micro-sized resonators has been utilized to study adsorption of analyte molecules in complex fluids of picogram quantity. Traditionally, the analysis to characterize the resonance frequency has focused solely on the mass change, whereas the effect of interfacial tension of the fluid has been largely neglected. By observing forced vibrations of a microfluidic cantilever filled with a series of alkanes using a laser Doppler vibrometer (LDV), we studied the effect of surface and interfacial tension on the resonance frequency. Here, we incorporated the Young-Laplace equation into the Euler-Bernoulli beam theory to consider extra stress that surface and interface tension exerts on the vibration of the cantilever. Based on the hypothesis that the near-surface region of a continuum is subject to the extra stress, thin surface and interface layers are introduced to our model. The thin layer is subject to an axial force exerted by the extra stress, which in turn affects the transverse vibration of the cantilever. We tested the analytical model by varying the interfacial tension between the silicon nitride microchannel cantilever and the filled alkanes, whose interfacial tension varies with chain length. Compared with the conventional Euler-Bernoulli model, our enhanced model provides a better agreement to the experimental results, shedding light on precision measurements using micro-sized cantilever resonators.

5.
ACS Sens ; 5(8): 2344-2350, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32786377

ABSTRACT

We present a unique three-dimensional palladium (Pd)-decorated crumpled reduced graphene oxide ball (Pd-CGB) nanocomposite for hydrogen (H2) detection in air at room temperature. Pd-CGB nanocomposites were synthesized using a rapid continuous flame aerosol technique. Graphene oxide reduction and metal decoration occurred simultaneously in a high-temperature reducing jet (HTRJ) process to produce Pd nanoparticles that were below 5 nm in average size and uniformly dispersed in the crumpled graphene structure. The sensors made from these nanocomposites were sensitive over a wide range of H2 concentrations (0.0025-2%) with response value, response time, and recovery time of 14.8%, 73 s, and 126 s, respectively, at 2% H2. Moreover, they were sensitive to H2 in both dry and humid conditions. The sensors were stable and recoverable after 20 cycles at 2% H2 with no degradation associated with volume expansion of Pd. Unlike two-step methods for fabricating Pd-decorated graphene sensors, the HTRJ process enables single-step formation of Pd- and other metal-decorated graphene nanocomposites with great potential for creating various gas sensors by simple drop-casting onto low-cost electrodes.


Subject(s)
Graphite , Nanocomposites , Hydrogen , Palladium , Temperature
6.
Carbohydr Polym ; 246: 116393, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32747225

ABSTRACT

Cellulose nanocrystals (CNC) are the focus of significant attention in the broad area of sustainable technologies for possessing many desirable properties such as a large surface area, high strength and stiffness, outstanding colloidal stability, excellent biocompatibility and biodegradability, low weight and abundance in nature. Yet, a fundamental understanding of the micro- and nanoscale electrical charge distribution on nanocellulose still remains elusive. Here we present direct quantification and mapping of surface charges on CNCs at ambient condition using advanced surface probe microscopy techniques such as Kelvin probe force microscopy (KPFM), electrostatic force microscopy (EFM) and force-distance (F-D) curve measurements. We show by EFM measurements that the surface charge in the solid-state (as contrasted with liquid dispersions) present at ambient condition on CNCs provided by Innotech Alberta is intrinsically negative and the charge density is estimated to be 13 µC/cm2. These charges also result in CNCs having two times the adhesive force exhibited by SiO2 substrates in adhesion mapping studies. The origin of negative surface charge is likely due to the formation of CNCs through sulfuric acid hydrolysis where sulfate half esters groups remained on the surface (Johnston et al., 2018).


Subject(s)
Cellulose/chemistry , Microscopy, Atomic Force/methods , Microscopy, Scanning Probe/methods , Nanoparticles/chemistry , Hydrolysis , Physical Phenomena , Silicon Dioxide , Sulfuric Acids/chemistry , Surface Properties
7.
ACS Appl Mater Interfaces ; 12(39): 43992-44006, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32530267

ABSTRACT

We report highly fluorescent cellulose nanocrystals (CNCs) formed by conjugating a carboxylated zinc phthalocyanine (ZnPc) to two different types of CNCs. The conjugated nanocrystals (henceforth called ZnPc@CNCs) were bright green in color and exhibited absorption and emission maxima at ∼690 and ∼715 nm, respectively. The esterification protocol employed to covalently bind carboxylated ZnPc to surface hydroxyl group rich CNCs was expected to result in a monolayer of ZnPc on the surface of the CNCs. However, dynamic light scattering (DLS) studies indicated a large increase in the hydrodynamic radius of CNCs following conjugation to ZnPc, which suggests the binding of multiple ZnPc molecular layers on the CNC surface. This binding could be through co-facial π-stacking of ZnPc, where ZnPc metallophthalocyanine rings are horizontal to the CNC surface. The other possible binding mode would give rise to conjugated systems where ZnPc metallophthalocyanine rings are oriented vertically on the CNC surface. Density functional theory based calculations showed stable geometry following the conjugation protocol that involved covalently attached ester bond formation. The conjugates demonstrated superior performance for potential sensing applications through higher photoluminescence quenching capabilities compared to pristine ZnPc.

8.
Opt Lett ; 45(8): 2144-2147, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32287177

ABSTRACT

Various standoff sensing techniques employing optical spectroscopy have been developed to address challenges in safely identifying trace amounts of explosives at a distance. A flexible anodic aluminum oxide (AAO) microcantilever and a high-power quantum cascade laser utilized as the infrared (IR) source are used for standoff IR reflection-absorption spectroscopy to detect explosive residues on a metal surface. Standoff sensing of trinitrotoluene (TNT) is demonstrated by exploiting the high thermomechanical sensitivity of a bimetallic AAO microcantilever. Moreover, sputtering gold onto the fabricated AAO nanowells generates a strong scattering and absorption of IR light in the wavelength range of 5.18 µm to 5.85 µm resulting in enhanced nanoplasmonic heating. Utilizing the IR absorption enhancement in this wavelength range, the plasmonic AAO cantilever could detect TNT molecules 7 times better than could the bimetallic AAO cantilever.

9.
ACS Appl Mater Interfaces ; 12(10): 11467-11478, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-31904215

ABSTRACT

Leading edge p-i-n type halide perovskite solar cells (PSCs) severely underperform n-i-p PSCs. p-i-n type PSCs that use PEDOT:PSS hole transport layers (HTLs) struggle to generate open-circuit photovoltage values higher than 1 V. NiO HTLs have shown greater promise in achieving high Voc values albeit inconsistently. In this report, a NiO nanomesh with Ni3+ defect grown by the hydrothermal method was used to obtain PSCs with Voc values that consistently exceeded 1.10 V (champion Voc = 1.14 V). A champion device photoconversion efficiency of 17.75% was observed. Density functional theory modeling was used to understand the interfacial properties of the NiO/perovskite interface. The PCE of PSCs constructed using the Ni3+-doped NiO nanomesh HTL was ∼34% higher than that of conventional compact NiO-based perovskite solar cells. A suite of characterization techniques such as transmission electron microscopy, field emission scanning electron microscopy, intensity-modulated photocurrent spectroscopy, intensity-modulated photovoltage spectroscopy, time-resolved photoluminescence, steady-state photoluminescence, and Kelvin probe force microscopy provided evidence of better film quality, enhanced charge transfer, and suppressed charge recombination in PSCs based on hydrothermally grown NiO nanostructures.

10.
Sci Rep ; 10(1): 925, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31969594

ABSTRACT

A decade ago, non-radiative wireless power transmission re-emerged as a promising alternative to deliver electrical power to devices where a physical wiring proved impracticable. However, conventional "coupling-based" approaches face performance issues when multiple devices are involved, as they are restricted by factors like coupling and external environments. Zenneck waves are excited at interfaces, like surface plasmons and have the potential to deliver electrical power to devices placed on a conducting surface. Here, we demonstrate, efficient and long range delivery of electrical power by exciting non-radiative waves over metal surfaces to multiple loads. Our modeling and simulation using Maxwell's equation with proper boundary conditions shows Zenneck type behavior for the excited waves and are in excellent agreement with experimental results. In conclusion, we physically realize a radically different class of power transfer system, based on a wave, whose existence has been fiercely debated for over a century.

11.
ACS Appl Mater Interfaces ; 11(38): 35404-35409, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31476860

ABSTRACT

Techniques for scaling-up the direct-current (dc) triboelectricity generation in MoS2 multilayer-based Schottky nanocontacts are vital for exploiting the nanoscale phenomenon for real-world applications of energy harvesting and sensing. Here, we show that scaling-up the dc output can be realized by using various MoS2 multilayer-based heterojunctions including metal/semiconductor (MS), metal/insulator (tens of nanometers)/semiconductor (MIS), and semiconductor/insulator (a few nanometers)/semiconductor (SIS) moving structures. It is shown that the tribo-excited energetic charge carriers can overcome the interfacial potential barrier by different mechanisms, such as thermionic emission, defect conduction, and quantum tunneling in the case of MS, MIS, and SIS moving structures. By tailoring the interface structure, it is possible to trigger electrical conduction resulting in optimized power output. We also show that the band bending in the surface-charged region of MoS2 determines the direction of the dc power output. Our experimental results show that engineering the interface structure opens up new avenues for developing next-generation semiconductor-based mechanical energy conversion with high performance.

12.
Sci Rep ; 9(1): 10587, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31332215

ABSTRACT

The work investigates fouling in a microfluidic membrane mimic (MMM) filtration system for foulants such as polystyrene particles and large polymeric molecules. Our MMM device consists of a staggered arrangement of pillars which enables real-time visualization and analysis of pore-scale phenomena. Different fouling scenarios are investigated by conducting constant-pressure experiments. Fouling experiments are performed with three different types of foulants: polystyrene particle solution (colloidal fouling), polyacrylamide polymer solution (organic fouling) and a mixture of these two solutions (combined fouling). Four major categories of microscopic fouling are observed: cake filtration (upstream), pore blocking (inside the pores), colloidal aggregation (downstream) and colloidal streamer fouling (downstream). Our microfluidic experiments show that downstream colloidal aggregation and streamer fouling have a significant effect on overall membrane fouling which were not studied before.

13.
ACS Appl Mater Interfaces ; 11(20): 18720-18729, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31045346

ABSTRACT

Although recent years have witnessed intense efforts and innovations in the design of flexible conductive materials for the development of next-generation electronic devices, it remains a great challenge to integrate multifunctionalities such as stretchability, self-healing, adhesiveness, and sensing capability into one conductive system for practical applications. In this work, for the first time, we have prepared a new electrically conductive elastomer composite that combines all these functionalities by triggering in situ polymerization of pyrrole in a supramolecular polymer matrix cross-linked by multiple hydrogen-bonding 2-ureido-4[1 H]-pyrimidinone (UPy) groups. The polypyrrole (PPy) particles were uniformly dispersed and imparted to the composite desirable conductive properties, while the reversible nature of the dynamic multiple hydrogen bonds in the polymer matrix allowed excellent stretchability, fast self-healing ability, and adhesiveness under ambient condition. The elastomer composite with the incorporation of 7.5 wt % PPy displayed a mechanical strength of 0.72 MPa with an elongation over 300%, where the rapid self-healing of the mechanical and electrical properties was achieved within 5 min. The elastic material also exhibited strong adhesiveness to a broad range of inorganic and organic substrates, and it was further fabricated as a strain sensor for the detection of both large and subtle human motions (i.e., finger bending, pulse beating). The novel PPy-doped conductive elastomer has demonstrated great potential as functional sensors for wearable electronics, which provides a facile and promising approach to the development of various flexible electronic materials with multifunctionalities by combining conductive components with supramolecular polymers.

14.
Anal Chem ; 91(12): 7570-7577, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31090394

ABSTRACT

We introduce a centrifugal microfluidic disc that accepts a small volume in (∼5 µL), performs sample cleanup on human serum samples, and delivers a small volume out, for subsequent metabolite analysis by surface assisted laser desorption/ionization (SALDI) mass spectrometry (MS) or hydrophilic interaction liquid chromatography (HILIC)-MS. The centrifugal microfluidic disc improves the MS results by removing proteins and lipids from serum. In the case of SALDI-MS, sample background electrolytes are segregated from analytes during the spotting process by the action of the SALDI-chip during drying, for further cleanup, while HILIC separates the salts in HILIC-MS. The resulting mass spectra of disc-prepared samples show a clean background and high signal-to-noise ratio for metabolite peaks. Several representative ionic metabolites from human serum samples were successfully quantified. The performances of the sample preparation disc for SALDI-MS and HILIC-MS were assessed and were comparable. Reproducibility, sample bias, and detection limits for SALDI-MS compared well to ultrafiltration sample preparation.


Subject(s)
Metabolome , Microfluidics/methods , Centrifugation , Chromatography, High Pressure Liquid , Humans , Hydrophobic and Hydrophilic Interactions , Ions/chemistry , Malates/blood , Nanoparticles/chemistry , Reproducibility of Results , Signal-To-Noise Ratio , Silicon Dioxide/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Taurine/blood
15.
Sci Adv ; 5(1): eaav2820, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30613783

ABSTRACT

Although the generation of mechanical stress in the anode material is suggested as a possible reason for electrode degradation and fading of storage capacity in batteries, only limited knowledge of the electrode stress and its evolution is available at present. Here, we show real-time monitoring of the interfacial stress of a few-layer MoS2 system under the sodiation/desodiation process using microcantilever electrodes. During the first sodiation with a voltage plateau of 1.0 to 0.85 V, the MoS2 exhibits a compressive stress (2.1 Nm-1), which is substantially smaller than that measured (9.8 Nm-1) during subsequent plateaus at 0.85 to 0.4 V due to the differential volume expansion of the MoS2 film. The conversion reaction to Mo below 0.1 V generates an anomalous compressive stress of 43 Nm-1 with detrimental effects. These results also suggest the existence of a separate discharge stage between 0.6 and 0.1 V, where the generated stress is only approximately one-third of that observed below 0.1 V. This approach can be adapted to help resolve the localized stress in a wide range of electrode materials, to gain additional insights into mechanical effects of charge storage, and for long-lifetime battery design.

16.
Nanoscale ; 11(1): 321-330, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30534777

ABSTRACT

We report simultaneous plasmonic scattering and Raman spectroscopic observations of single citrate capped silver nanoparticles (AgNPs) which exhibit surface enhanced Raman scattering (SERS) upon meeting specific conditions induced by laser (532 nm) exposure. We show that nanoparticles which are not initially SERS active become SERS active by laser-induced reshaping/reorientation. A set-up developed for these observations enabled in situ high speed time-lapse characterization using plasmonic and Raman spectroscopies in conjunction with dark-field microscopy (DFM). Changes in the AgNPs were confirmed by monitoring plasmonic scattering spectra and DFM images. Time-lapse observations have shown that laser-induced changes in the plasmonic properties of AgNPs resulted in the appearance of SERS. Spectral matching between plasmon resonance and downward molecular vibronic transitions for molecules adsorbed on the surface of plasmonic nanomaterials is attributed to the nanoparticle SERS. We have further shown that the release of silver ions by silver nanoparticles can be the probable reason for their plasmonic changes. Gold nanoparticles inert to such mild (850 µW, 532 nm) laser-induced changes do not exhibit the appearance of SERS.

17.
Commun Biol ; 1: 175, 2018.
Article in English | MEDLINE | ID: mdl-30374465

ABSTRACT

Mechanical signaling involved in molecular interactions lies at the heart of materials science and biological systems, but the mechanisms involved are poorly understood. Here we use nanomechanical sensors and intact human cells to provide unique insights into the signaling pathways of connectivity networks, which deliver the ability to probe cells to produce biologically relevant, quantifiable and reproducible signals. We quantify the mechanical signals from malignant cancer cells, with 10 cells per ml in 1000-fold excess of non-neoplastic human epithelial cells. Moreover, we demonstrate that a direct link between cells and molecules creates a continuous connectivity which acts like a percolating network to propagate mechanical forces over both short and long length-scales. The findings provide mechanistic insights into how cancer cells interact with one another and with their microenvironments, enabling them to invade the surrounding tissues. Further, with this system it is possible to understand how cancer clusters are able to co-ordinate their migration through narrow blood capillaries.

18.
Opt Express ; 26(18): 23898-23910, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30184884

ABSTRACT

Optical forces acting on particles - controlled by the intensity, polarization and direction of optical beams - have become an important tool in manipulation, sorting and analysis of nano/micro-particles. The nature of these forces has been well understood in reciprocal structures exhibiting time-reversal symmetries. Here, we investigate the nature of optical forces in non-reciprocal structures with non-degenerate counter-propagating modes. We consider the specific case of non-reciprocity induced via translational motion and show that the two counter-propagating modes in a moving slab-waveguide are not degenerate which results in a non-zero lateral and longitudinal force on a nanoparticle. We prove that these anomalous forces are fundamentally connected to near-field photonic spin in optical waveguides and explain their directionality using universal spin-momentum locking of evanescent waves. The presented results show that the interplay of photon spin and non-reciprocity can lead to unique avenues of controlling nanoscale optical forces on-chip.

19.
Sci Rep ; 8(1): 12313, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30120353

ABSTRACT

We have developed conductive microstructures using micropatternable and conductive hybrid nanocomposite polymer. In this method carbon fibers (CFs) were blended into polydimethylsiloxane (PDMS). Electrical conductivities of different compositions were investigated with various fiber lengths (50-250 µm), and weight percentages (wt%) (10-60 wt%). Sample composites of 2 cm × 1 cm × 500 µm were fabricated for 4-point probe conductivity measurements. The measured percolation thresholds varied with length of the fibers: 50 wt% (307.7 S/m) for 50 µm, 40 wt% (851.1 S/m) for 150 µm, and 30 wt% (769.23 S/m) for 250 µm fibers. The conductive composites showed higher elastic modulus when compared to that of PDMS.

20.
ACS Sens ; 3(4): 815-822, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29533595

ABSTRACT

The growing need to prevent pathogen outbreaks is irrefutable in the case of the food industry. Early detection in products, especially beverages, contaminated with bacterial strains is vital to avoid infected foods from reaching the consumer. If E. coli is pesent in such foods, it can cause infections. It can also be an indicator of the existence of other harmful coliforms. In this study, we have investigated the detection of Escherichia coli ( E. coli) in orange juice using a portable nanofiber-light addressable potentiometric sensor (NF-LAPS). We have chosen electrospun pH-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) hydrogel NFs as the sensitive layer. The successful detection of E. coli was reported with the NF-LAPS in less than 1 h. The limit of detection (LOD) measured in the sensor is found to be102 CFU/mL. We have confirmed the selectivity of the biosensor toward E. coli by examining the response of the NF-LAPS against Salmonella typhimurium ( S. typhi), also commonly found in orange juice. Despite the complex nature of orange juice, the response of the biosensor is in no way affected while orange juice is tested as is.


Subject(s)
Escherichia coli/isolation & purification , Fruit and Vegetable Juices/microbiology , Nanofibers/chemistry , Potentiometry
SELECTION OF CITATIONS
SEARCH DETAIL
...