Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 70(12): 1356-1366, 2020 12.
Article in English | MEDLINE | ID: mdl-32841108

ABSTRACT

In the 2014 National Air Toxics Assessment (NATA), the carbonyl compounds formaldehyde and acetaldehyde were identified as key cancer risk drivers and acrolein was identified as one of the three air toxics that drive most of the noncancer risk. In this assessment, averaged across the Continental United States, about 75% of ambient formaldehyde and acetaldehyde, and about 18% of acrolein, is formed secondarily. This study was conducted to estimate the potential contribution to these secondarily formed carbonyl compounds from mobile sources. To develop such estimates, we conducted several CMAQ runs, where emissions are set to zero for different mobile source sectors, to determine their potential contribution. Although zeroing out emissions from an individual sector can offer only a rough approximation of how the sector might contribute to overall secondary concentrations, our results suggest that across the U. S., mobile sources contribute about 6-18% to secondary formaldehyde, 0-10% to secondary acetaldehyde, and 0-70% to secondary acrolein, depending on location. Implications: Photochemical modeling of carbonyl compounds was conducted with emissions set to zero for various mobile source sectors to determine their contribution to secondary concentrations. Results indicated mobile sources contributed to total and secondary concentrations of formaldehyde, acetaldehyde, and acrolein in many locations across the U.S. with acrolein the dominant contributor in some locations. However, biogenic sources dominated secondary formaldehyde and acetaldehyde, and fires dominated secondary acrolein.


Subject(s)
Acetaldehyde/analysis , Acrolein/analysis , Air Pollutants/analysis , Formaldehyde/analysis , Models, Theoretical , United States
2.
Environ Sci Technol ; 50(22): 12356-12364, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27779870

ABSTRACT

A hybrid air quality model has been developed and applied to estimate annual concentrations of 40 hazardous air pollutants (HAPs) across the continental United States (CONUS) to support the 2011 calendar year National Air Toxics Assessment (NATA). By combining a chemical transport model (CTM) with a Gaussian dispersion model, both reactive and nonreactive HAPs are accommodated across local to regional spatial scales, through a multiplicative technique designed to improve mass conservation relative to previous additive methods. The broad scope of multiple pollutants capturing regional to local spatial scale patterns across a vast spatial domain is precedent setting within the air toxics community. The hybrid design exhibits improved performance relative to the stand alone CTM and dispersion model. However, model performance varies widely across pollutant categories and quantifiably definitive performance assessments are hampered by a limited observation base and challenged by the multiple physical and chemical attributes of HAPs. Formaldehyde and acetaldehyde are the dominant HAP concentration and cancer risk drivers, characterized by strong regional signals associated with naturally emitted carbonyl precursors enhanced in urban transport corridors with strong mobile source sector emissions. The multiple pollutant emission characteristics of combustion dominated source sectors creates largely similar concentration patterns across the majority of HAPs. However, reactive carbonyls exhibit significantly less spatial variability relative to nonreactive HAPs across the CONUS.


Subject(s)
Air Pollutants , Environmental Monitoring , Models, Theoretical , Formaldehyde , Hazardous Substances , Humans , United States
3.
J Vis Exp ; (111)2016 05 14.
Article in English | MEDLINE | ID: mdl-27214495

ABSTRACT

One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.


Subject(s)
Metals , Alloys , Lasers
4.
J Air Waste Manag Assoc ; 58(3): 451-61, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18376647

ABSTRACT

A large body of literature published in recent years suggests increased health risk due to exposure of people to air pollution in close proximity to roadways. As a result, there is a need to more accurately represent the spatial concentration gradients near roadways to develop mitigation strategies. In this paper, we present a practical, readily adaptable methodology, using a "bottom-up" approach to develop a detailed highway vehicle emission inventory that includes emissions for individual road links. This methodology also takes advantage of geographic information system (GIS) software to improve the spatial accuracy of the activity information obtained from a Travel Demand Model. In addition, we present an air quality modeling application of this methodology in New Haven, CT. This application uses a hybrid modeling approach, in which a regional grid-based model is used to characterize average local ambient concentrations, and a Gaussian dispersion model is used to provide texture within the modeling domain because of spatial gradients associated with highway vehicle emissions and other local sources. Modeling results show substantial heterogeneity of pollutant concentrations within the modeling domain and strong spatial gradients associated with roadways, particularly for pollutants dominated by direct emissions.


Subject(s)
Air Pollutants, Occupational/analysis , Air Pollution/analysis , Vehicle Emissions/analysis , Circadian Rhythm , Connecticut , Data Interpretation, Statistical , Environmental Health , Environmental Monitoring , Models, Statistical
5.
J Expo Sci Environ Epidemiol ; 18(1): 45-58, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17878926

ABSTRACT

Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration monitoring or modeling data. In this paper, we examine the limitations of using outdoor concentration predictions instead of modeled personal exposures for over 30 gaseous and particulate hazardous air pollutants (HAPs) in the US. The analysis uses the results from an air quality dispersion model (the ASPEN or Assessment System for Population Exposure Nationwide model) and an inhalation exposure model (the HAPEM or Hazardous Air Pollutant Exposure Model, Version 5), applied by the US. Environmental protection Agency during the 1999 National Air Toxic Assessment (NATA) in the US. Our results show that the total predicted chronic exposure concentrations of outdoor HAPs from all sources are lower than the modeled ambient concentrations by about 20% on average for most gaseous HAPs and by about 60% on average for most particulate HAPs (mainly, due to the exclusion of indoor sources from our modeling analysis and lower infiltration of particles indoors). On the other hand, the HAPEM/ASPEN concentration ratio averages for onroad mobile source exposures were found to be greater than 1 (around 1.20) for most mobile-source related HAPs (e.g. 1, 3-butadiene, acetaldehyde, benzene, formaldehyde) reflecting the importance of near-roadway and commuting environments on personal exposures to HAPs. The distribution of the ratios of personal to ambient concentrations was found to be skewed for a number of the VOCs and reactive HAPs associated with major source emissions, indicating the importance of personal mobility factors. We conclude that the increase in personal exposures from the corresponding predicted ambient levels tends to occur near locations where there are either major emission sources of HAPs or when individuals are exposed to either on- or nonroad sources of HAPs during their daily activities. These findings underscore the importance of applying exposure-modeling methods, which incorporate information on time-activity, commuting, and exposure factors data, for the purposes of assigning exposures in air pollution health studies.


Subject(s)
Air Pollutants/analysis , Environmental Exposure , Hazardous Substances/analysis , Organic Chemicals/analysis , Public Health , Air Movements , Air Pollutants/toxicity , Hazardous Substances/toxicity , Humans , Models, Biological , Organic Chemicals/toxicity , Particle Size , Population Groups , Risk Assessment , Time Factors , United States , United States Environmental Protection Agency , Volatilization
6.
J Expo Sci Environ Epidemiol ; 17(1): 95-105, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17006436

ABSTRACT

Modeling of inhalation exposure and risks resulting from exposure to mobile source air toxics can be used to evaluate impacts of reductions from control programs on overall risk, as well as changes in relative contributions of different source sectors to risk, changes in contributions of different pollutants to overall risk, and changes in geographic distributions of risk. Such analysis is useful in setting regulatory priorities, and informing the decision-making process. In this paper, we have conducted national-scale air quality, exposure, and risk modeling for the US in the years 2015, 2020, and 2030, using similar tools and methods as the 1999 National-Scale Air Toxics Assessment. Our results suggest that US Environmental Protection Agency emission control programs will substantially reduce average inhalation cancer risks and potential noncancer health risks from exposure to mobile source air toxics. However, cancer risk and noncancer hazard due to inhalation of air toxics will continue to be a public health concern.


Subject(s)
Air Pollutants/toxicity , Humans , Inhalation Exposure , Public Health , Risk Assessment , United States , United States Environmental Protection Agency
7.
J Air Waste Manag Assoc ; 57(12): 1469-79, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18200932

ABSTRACT

Analyses of U.S. Environmental Protection Agency (EPA) certification data, California Air Resources Board surveillance testing data, and EPA research testing data indicated that EPA's MOBILE6.2 emission factor model substantially underestimates emissions of gaseous air toxics occurring during vehicle starts at cold temperatures for light-duty vehicles and trucks meeting EPA Tier 1 and later standards. An unofficial version of the MOBILE6.2 model was created to account for these underestimates. When this unofficial version of the model was used to project emissions into the future, emissions increased by almost 100% by calendar year 2030, and estimated modeled ambient air toxics concentrations increased by 6-84%, depending on the pollutant. To address these elevated emissions, EPA recently finalized standards requiring reductions of emissions when engines start at cold temperatures.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Cold Temperature , Environmental Monitoring , Motor Vehicles , Vehicle Emissions/analysis , Air Pollutants/chemistry , Gasoline , United States
8.
Sci Total Environ ; 366(2-3): 590-601, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16448686

ABSTRACT

Projecting a hazardous air pollutant (HAP) emission inventory to future years can provide valuable information for air quality management activities such as prediction of program successes and helping to assess future priorities. We have projected the 1999 National Emission Inventory for HAPs to numerous future years up to 2020 using the following tools and data: the Emissions Modeling System for Hazardous Air Pollutants (EMS-HAP), the National Mobile Inventory Model (NMIM), emission reduction information resulting from national standards and economic growth data. This paper discusses these projection tools, the underlying data, limitations and the results. The results presented include total HAP emissions (sum of pollutants) and toxicity-weighted HAP emissions for cancer and respiratory noncancer effects. Weighting emissions by toxicity does not consider fate, transport, or location and behavior of receptor populations and can only be used to estimate relative risks of direct emissions. We show these projections, along with historical emission trends. The data show that stationary source programs under Section 112 of the Clean Air Act Amendments of 1990 and mobile source programs which reduce hydrocarbon and particulate matter emissions, as well as toxic emission performance standards for reformulated gasoline, have contributed to and are expected to continue to contribute to large declines in air toxics emissions, in spite of economic and population growth. We have also analyzed the particular HAPs that dominate the source sectors to better understand the historical and future year trends and the differences across sectors.


Subject(s)
Air Pollutants/analysis , Models, Theoretical , Environmental Exposure , Fires , Forecasting , Hazardous Substances/analysis , Neoplasms , Risk Assessment , Vehicle Emissions
SELECTION OF CITATIONS
SEARCH DETAIL
...