Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 49(19): 11622-30, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26392038

ABSTRACT

Recent scientific scrutiny and concerns over exposure, toxicity, and risk have led to international regulatory efforts resulting in the reduction or elimination of certain perfluorinated compounds from various products and waste streams. Some manufacturers have started producing shorter chain per- and polyfluorinated compounds to try to reduce the potential for bioaccumulation in humans and wildlife. Some of these new compounds contain central ether oxygens or other minor modifications of traditional perfluorinated structures. At present, there has been very limited information published on these "replacement chemistries" in the peer-reviewed literature. In this study we used a time-of-flight mass spectrometry detector (LC-ESI-TOFMS) to identify fluorinated compounds in natural waters collected from locations with historical perfluorinated compound contamination. Our workflow for discovery of chemicals included sequential sampling of surface water for identification of potential sources, nontargeted TOFMS analysis, molecular feature extraction (MFE) of samples, and evaluation of features unique to the sample with source inputs. Specifically, compounds were tentatively identified by (1) accurate mass determination of parent and/or related adducts and fragments from in-source collision-induced dissociation (CID), (2) in-depth evaluation of in-source adducts formed during analysis, and (3) confirmation with authentic standards when available. We observed groups of compounds in homologous series that differed by multiples of CF2 (m/z 49.9968) or CF2O (m/z 65.9917). Compounds in each series were chromatographically separated and had comparable fragments and adducts produced during analysis. We detected 12 novel perfluoroalkyl ether carboxylic and sulfonic acids in surface water in North Carolina, USA using this approach. A key piece of evidence was the discovery of accurate mass in-source n-mer formation (H(+) and Na(+)) differing by m/z 21.9819, corresponding to the mass difference between the protonated and sodiated dimers.


Subject(s)
Carboxylic Acids/analysis , Fluorocarbons/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Water Pollutants, Chemical/analysis , Carboxylic Acids/chemistry , Chemical Fractionation , Ethers/analysis , Ethers/chemistry , Fluorocarbons/chemistry , Humans , North Carolina , Sulfonic Acids/analysis , Sulfonic Acids/chemistry , Water/analysis , Water Pollutants, Chemical/chemistry
4.
Sci Total Environ ; 402(2-3): 201-16, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18433838

ABSTRACT

Numerous studies have shown that a variety of manufactured and natural organic compounds such as pharmaceuticals, steroids, surfactants, flame retardants, fragrances, plasticizers and other chemicals often associated with wastewaters have been detected in the vicinity of municipal wastewater discharges and livestock agricultural facilities. To provide new data and insights about the environmental presence of some of these chemicals in untreated sources of drinking water in the United States targeted sites were sampled and analyzed for 100 analytes with sub-parts per billion detection capabilities. The sites included 25 ground- and 49 surface-water sources of drinking water serving populations ranging from one family to over 8 million people. Sixty-three of the 100 targeted chemicals were detected in at least one water sample. Interestingly, in spite of the low detection levels 60% of the 36 pharmaceuticals (including prescription drugs and antibiotics) analyzed were not detected in any water sample. The five most frequently detected chemicals targeted in surface water were: cholesterol (59%, natural sterol), metolachlor (53%, herbicide), cotinine (51%, nicotine metabolite), beta-sitosterol (37%, natural plant sterol), and 1,7-dimethylxanthine (27%, caffeine metabolite); and in ground water: tetrachloroethylene (24%, solvent), carbamazepine (20%, pharmaceutical), bisphenol-A (20%, plasticizer), 1,7-dimethylxanthine (16%, caffeine metabolite), and tri (2-chloroethyl) phosphate (12%, fire retardant). A median of 4 compounds were detected per site indicating that the targeted chemicals generally occur in mixtures (commonly near detection levels) in the environment and likely originate from a variety of animal and human uses and waste sources. These data will help prioritize and determine the need, if any, for future occurrence, fate and transport, and health-effects research for subsets of these chemicals and their degradates most likely to be found in water resources used for drinking water in the United States.


Subject(s)
Organic Chemicals/analysis , Pharmaceutical Preparations/analysis , Water Pollutants, Chemical/analysis , Water Supply/analysis , Sensitivity and Specificity , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...