Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 162(5): 1039-50, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26300124

ABSTRACT

Chromatin state variation at gene regulatory elements is abundant across individuals, yet we understand little about the genetic basis of this variability. Here, we profiled several histone modifications, the transcription factor (TF) PU.1, RNA polymerase II, and gene expression in lymphoblastoid cell lines from 47 whole-genome sequenced individuals. We observed that distinct cis-regulatory elements exhibit coordinated chromatin variation across individuals in the form of variable chromatin modules (VCMs) at sub-Mb scale. VCMs were associated with thousands of genes and preferentially cluster within chromosomal contact domains. We mapped strong proximal and weak, yet more ubiquitous, distal-acting chromatin quantitative trait loci (cQTL) that frequently explain this variation. cQTLs were associated with molecular activity at clusters of cis-regulatory elements and mapped preferentially within TF-bound regions. We propose that local, sequence-independent chromatin variation emerges as a result of genetic perturbations in cooperative interactions between cis-regulatory elements that are located within the same genomic domain.


Subject(s)
Chromatin/chemistry , Gene Expression Regulation , Genetic Variation , Genome, Human , Chromatin/metabolism , Chromosomes, Human/chemistry , Genetics, Population , Humans , Quantitative Trait Loci , Regulatory Sequences, Nucleic Acid , Transcription Factors/metabolism
2.
Science ; 342(6159): 744-7, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-24136355

ABSTRACT

DNA sequence variation has been associated with quantitative changes in molecular phenotypes such as gene expression, but its impact on chromatin states is poorly characterized. To understand the interplay between chromatin and genetic control of gene regulation, we quantified allelic variability in transcription factor binding, histone modifications, and gene expression within humans. We found abundant allelic specificity in chromatin and extensive local, short-range, and long-range allelic coordination among the studied molecular phenotypes. We observed genetic influence on most of these phenotypes, with histone modifications exhibiting strong context-dependent behavior. Our results implicate transcription factors as primary mediators of sequence-specific regulation of gene expression programs, with histone modifications frequently reflecting the primary regulatory event.


Subject(s)
Chromatin/metabolism , DNA/metabolism , Gene Expression Regulation , Genetic Variation , Transcription Factors/metabolism , Transcription, Genetic , Alleles , Base Sequence/genetics , Binding Sites/genetics , Chromatin/chemistry , DNA/chemistry , Histones/chemistry , Histones/metabolism , Humans , Polymorphism, Single Nucleotide , Promoter Regions, Genetic
3.
Protein Expr Purif ; 92(1): 67-76, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24021764

ABSTRACT

Transient gene expression (TGE) from mammalian cells is an increasingly important tool for the rapid production of recombinant proteins for research applications in biochemistry, structural biology, and biomedicine. Here we review methods for the transfection of human embryo kidney (HEK-293) and Chinese hamster ovary (CHO) cells in suspension culture using the cationic polymer polyethylenimine (PEI) for gene delivery.


Subject(s)
Drug Carriers/metabolism , Genetic Vectors/administration & dosage , Polyethyleneimine/metabolism , Transfection/methods , Animals , CHO Cells , Cell Culture Techniques/instrumentation , Cricetinae , Cricetulus , Equipment Design , HEK293 Cells , Humans , Recombinant Proteins/genetics , Viruses/genetics
4.
Bioconjug Chem ; 23(9): 1856-63, 2012 Sep 19.
Article in English | MEDLINE | ID: mdl-22812498

ABSTRACT

To extend the plasma half-life of a bicyclic peptide antagonist, we chose to link it to the Fc fragment of the long-lived serum protein IgG1. Instead of chemically conjugating the entire bicyclic peptide, we recombinantly expressed its peptide moiety as a fusion protein to an Fc fragment and subsequently cyclized the peptide by chemically reacting its three cysteine residues with tris-(bromomethyl)benzene. This reaction was efficient and selective, yielding completely modified peptide fusion protein and no side products. After optimization of the linker and the Fc fragment format, the bicyclic peptide was fully functional as an inhibitor (K(i) = 76 nM) and showed an extended terminal half-life of 1.5 days in mice. The unexpectedly clean reaction makes chemical macrocyclization of peptide-Fc fusion proteins an attractive synthetic approach. Its good compatibility with the Fc fragment may lend the bromomethylbenzene-based chemistry also for the generation of antibody-drug conjugates.


Subject(s)
Immunoglobulin Fc Fragments/chemistry , Peptides/chemistry , Animals , Base Sequence , Chromatography, Gel , Cyclization , DNA Primers , Electrophoresis, Polyacrylamide Gel , Mice , Recombinant Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization
5.
EMBO J ; 21(15): 3989-4000, 2002 Aug 01.
Article in English | MEDLINE | ID: mdl-12145200

ABSTRACT

In this paper, we studied the fate of endocytosed glycosylphosphatidyl inositol anchored proteins (GPI- APs) in mammalian cells, using aerolysin, a bacterial toxin that binds to the GPI anchor, as a probe. We find that GPI-APs are transported down the endocytic pathway to reducing late endosomes in BHK cells, using biochemical, morphological and functional approaches. We also find that this transport correlates with the association to raft-like membranes and thus that lipid rafts are present in late endosomes (in addition to the Golgi and the plasma membrane). In marked contrast, endocytosed GPI-APs reach the recycling endosome in CHO cells and this transport correlates with a decreased raft association. GPI-APs are, however, diverted from the recycling endosome and routed to late endosomes in CHO cells, when their raft association is increased by clustering seven or less GPI-APs with an aerolysin mutant. We conclude that the different endocytic routes followed by GPI-APs in different cell types depend on the residence time of GPI-APs in lipid rafts, and hence that raft partitioning regulates GPI-APs sorting in the endocytic pathway.


Subject(s)
Bacterial Toxins/metabolism , Endocytosis/physiology , Endosomes/metabolism , Glycosylphosphatidylinositols/metabolism , Membrane Microdomains/physiology , Protein Transport/physiology , Animals , CHO Cells/metabolism , Cell Line , Cricetinae , Cricetulus , Detergents/pharmacology , Kidney , Mesocricetus , Pore Forming Cytotoxic Proteins , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...