Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Water Resour Assoc ; 54(3): 586-593, 2018.
Article in English | MEDLINE | ID: mdl-31360057

ABSTRACT

Water quality trading (WQT) has potential to be a low-cost means for achieving water quality goals. WQT allows regulated wastewater treatment plants (WWTPs) facing discharge limits the flexibility to either reduce their own discharge or purchase pollution control from other WWTPs or nonpoint sources (NPSs) such as agricultural producers. Under this limited scope, programs with NPSs have been largely unsuccessful at meeting water quality goals. The decision to participate in trading depends on many factors including the pollution control costs, uncertainty in pollution control, and discharge limits. Current research that focuses on making WQT work tends to identify how to increase participation by traditional traders such as WWTPs and agricultural producers. As an alternative, but complementary approach, we consider whether augmenting WQT markets with non-traditional participants would help increase the number of trades. Determining the economic incentives for these potential participants requires the development of novel benefit functions requiring not only economic considerations, but also accounting for ecological and engineering processes. Existing literature on non-traditional participants in environmental markets tends to center on air quality and only increasing citizen participation as buyers. Here, we consider the issues for broadening participation (both buyers and sellers) in WQT and outline a multidisciplinary approach to begin evaluating feasibility.

3.
Environ Manage ; 42(2): 344-59, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18446406

ABSTRACT

In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.


Subject(s)
Cities , Conservation of Natural Resources/methods , Public Policy , Rain , Waste Disposal, Fluid/methods , Australia , Policy Making , United States , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...