Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Phys Chem A ; 112(25): 5566-72, 2008 Jun 26.
Article in English | MEDLINE | ID: mdl-18510301

ABSTRACT

Can isomer structures of hydrogen-bonded solute x solvent clusters be assigned by correlating gas-phase experimental S0 <--> S1 transitions with vertical or adiabatic excitation energies calculated by time-dependent density functional theory (TD-DFT)? We study this question for 7-hydroxyquinoline (7HQ), for which an experimental database of 19 complexes and clusters is available. The main advantage of the adiabatic TD-B3LYP S0 <--> S1 excitations is the small absolute error compared to experiment, while for the calculated vertical excitations, the average offset is +1810 cm(-1). However, the empirically adjusted vertical excitations correlate more closely with the experimental transition energies, with a standard deviation of sigma = 72 cm(-1). For the analogous correlation with calculated adiabatic TD-DFT excitations, the standard deviation is sigma = 157 cm(-1). The vertical and adiabatic TD-DFT correlation methods are applied for the identification of isomers of the 7-hydroxyquinoline.(MeOH) n , n = 1-3 clusters [Matsumoto, Y.; Ebata, T.; Mikami, N. J. Phys. Chem. B 2002, 106, 5591]. These confirm that the vertical TD-DFT/experimental correlation yields more effective isomer assignments.

2.
J Chem Phys ; 128(2): 024304, 2008 Jan 14.
Article in English | MEDLINE | ID: mdl-18205447

ABSTRACT

Spectral tuning effects on visible chromophores by hydrogen bonds are central to the chemistry of vision and of photosynthesis. A model for large spectral tuning effects by hydrogen bond switching is provided by the 7-hydroxyquinoline x HCOOH complex, which forms two isomers, CTN1 and CTN2, both with an HCOOH[...]N hydrogen bond but with different (quinoline)C-H[...]O=C hydrogen bonds. A 180 degrees rotation of the HCOOH moiety around the O-H[...]N hydrogen bond exchanges the C-H[...]O hydrogen bonds, rotates the dipole moment of HCOOH, and leads to an approximately 850 cm(-1) shift of the electronic spectrum. Mass-selected S1<--S0 resonant two-photon ionization, UV-UV holeburning, S1-->S0 fluorescence spectra, and photoionization efficiency curves of the two 7-hydroxyquinoline x HCOOH isomers were measured in supersonic expansions. Comparison to ab initio calculations allow us to determine the H-bond connectivity and structure of the two isomers and to assign their inter- and intramolecular vibrations. The Franck-Condon factors of the intermolecular shear vibration chi in the S1<--S0 spectra indicate that the weak C-H[...]O hydrogen bond contracts markedly in the CTN1 isomer but expands in the CTN2 isomer. These changes of H-bond lengths agree with the spectral shifts. In contrast, the strong O-H[...]N hydrogen bond undergoes little change upon S1[...]S0 excitation.

3.
J Chem Theory Comput ; 4(4): 603-13, 2008 Apr.
Article in English | MEDLINE | ID: mdl-26620935

ABSTRACT

A new theoretical approach for the calculation of the electronic and molecular structures of octahedrally-coordinated high-spin d(4) complexes is described. A prescription for the construction of an effective (3)T1 + (5)E (O) Hamiltonian from the ligand-field matrices of a complex with general trigonal symmetry is given, where the ligand field is parametrized in terms of the angular-overlap model (AOM). The Jahn-Teller matrices for the (3)T1 + ((5)E⊗e) vibronic Hamiltonian are constructed and the lowest eigenvalues are calculated by a numerical method. The model obviates the need to assume a temperature dependence of bonding parameters, inherent to the conventional ligand-field-theory approach and is applicable over the whole range of vibronic-coupling strengths, as demonstrated by example calculations on the [Mn(OD2)6](3+) cation and MgO:Cr(2+).

4.
J Phys Chem A ; 110(5): 1758-66, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16451005

ABSTRACT

Excited-state hydrogen-atom transfer (ESHAT) along a hydrogen-bonded solvent wire occurs for the supersonically cooled n = 3 ammonia-wire cluster attached to the scaffold molecule 7-hydroxyquinoline (7HQ) [Tanner, C.; et al. Science 2003, 302, 1736]. Here, we study the analogous three-membered solvent-wire clusters 7HQ.(NH3)n.(H2O)m, n + m = 3, using resonant two-photon ionization (R2PI) and UV-UV hole-burning spectroscopies. Substitution of H2O for NH3 has a dramatic effect on the excited-state H-atom transfer: The threshold for the ESHAT reaction is approximately 200 cm(-1) for 7HQ.(NH3)3, approximately 350 cm(-1) for both isomers of the 7HQ.(NH3)2.H2O cluster, and approximately 600 cm(-1) for 7HQ.NH3.(H2O)2 but increases to approximately 2000 cm(-1) for the pure 7HQ.(H2O)3 water-wire cluster. To understand the effect of the chemical composition of the solvent wire on the H-atom transfer, the reaction profiles of the low-lying electronic excited states of the n = 3 pure and mixed solvent-wire clusters are calculated with the configuration interaction singles (CIS) method. For those solvent wires with an NH3 molecule at the first position, injection of the H atom into the wire can occur by tunneling. However, further H-atom transfer is blocked by a high barrier at the first (and second) H2O molecule along the solvent wire. H-atom transfer along the entire length of the solvent wire, leading to formation of the 7-ketoquinoline (7KQ) tautomer, cannot occur for any of the H2O-containing clusters, in agreement with experimentally observed absence of 7KQ fluorescence.


Subject(s)
Hydrogen/chemistry , Hydrogen Bonding , Solvents/chemistry , Ultraviolet Rays , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...