Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 159 Pt 2: 308-13, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25956619

ABSTRACT

The elemental distribution within a Ti-Si-Al-C-N coating grown by physical vapour deposition on a Cr-doped WC-Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti-N adhesion layer. The composition of this layer, and the Ti-Al-N interlayer present between the adhesion layer and the main Ti-Si-Al-C-N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti-Al-Si-C-N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N(+) and Si(2+) at 14 Da.

2.
Ultramicroscopy ; 159 Pt 2: 217-22, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25667171

ABSTRACT

A magnetron sputtered amorphous Cr-B-C thin film was investigated by means of atom probe tomography (APT). The film is constituted of two phases; a Cr-rich phase present as a few nanometer large regions embedded in a Cr-poor phase (tissue phase). The Cr-rich regions form columnar chains oriented parallel to the growth direction of the film. It was found that the Cr-rich regions have a higher B:C ratio than the Cr-poor regions. The composition of the phases was determined as approximately 35Cr-33B-30C and 15Cr-40B-42C (at%), respectively. The results suggest that this type of nanocomposite films has a more complex structure than previously anticipated, which may have an importance for the mechanical and electrical properties.

3.
Ultramicroscopy ; 132: 60-4, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23607992

ABSTRACT

A major source of uncertainty in compositional measurements in atom probe tomography stems from the uncertainties of assigning peaks or parts of peaks in the mass spectrum to their correct identities. In particular, peak overlap is a limiting factor, whereas an ideal mass spectrum would have peaks at their correct positions with zero broadening. Here, we report a method to deconvolute the experimental mass spectrum into such an ideal spectrum and a system function describing the peak broadening introduced by the field evaporation and detection of each ion. By making the assumption of a linear and time-invariant behavior, a system of equations is derived that describes the peak shape and peak intensities. The model is fitted to the observed spectrum by minimizing the squared residuals, regularized by the maximum entropy method. For synthetic data perfectly obeying the assumptions, the method recovered peak intensities to within ±0.33 at%. The application of this model to experimental APT data is exemplified with Fe-Cr data. Knowledge of the peak shape opens up several new possibilities, not just for better overall compositional determination, but, e.g., for the estimation of errors of ranging due to peak overlap or peak separation constrained by isotope abundances.

4.
Ultramicroscopy ; 132: 285-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23489909

ABSTRACT

Experimental factors that influence adsorption of hydrogen from the residual gas on a nickel-rich alloy during atom probe tomography are investigated. The rate of adsorption has a maximum value at field strengths between 24 and 26 V/nm. It is found that by selecting sufficiently high laser energies, or alternatively high DC fields, it is possible to significantly reduce adsorbed quantities. Some of the physical mechanisms for hydrogen supply to the analyzed area of the tip are discussed, and it is concluded that the dominating supply mechanism is most likely direct adsorption from the gas phase. Low hydrogen adsorption at high fields is attributed to autoionization, and a decline at low fields is explained by reduced field adsorption.

5.
Ultramicroscopy ; 111(6): 609-14, 2011 May.
Article in English | MEDLINE | ID: mdl-21664544

ABSTRACT

A specially produced Ti(C,N) standard material, with a known nominal composition, was investigated with laser assisted atom probe tomography. The occurrence of molecular ions and single/multiple events was found to be influenced by the laser pulse energy, and especially C related events were affected. Primarily two issues were considered when the composition of Ti(C,N) was determined. The first one is connected to detector efficiency, due to the detector dead-time. The second one is connected to peak overlap in the mass spectrum. A method is proposed for quantification of the C content in order to establish the C/N ratio. A correction was made to the major C peaks, C at 6 and 12 Da, with the (13)C isotopes, at 6.5 and 13 Da, according to the known natural abundance. In addition, a correction of the peak at 24 Da, where C and Ti overlap, is proposed based on the occurrence of single/multiple events for respective element. The results were compared to the results from other techniques such as electron energy loss spectroscopy, chemical analysis and X-ray diffraction. After applying the corrections, atom probe tomography results were satisfactory. Furthermore, the content of dissolved O in Ti(C,N) was successfully quantified.

6.
Ultramicroscopy ; 111(6): 711-4, 2011 May.
Article in English | MEDLINE | ID: mdl-21247700

ABSTRACT

The zirconium-based alloy Zircaloy-2 contains small amounts of iron, chromium and nickel dissolved in the matrix. Several attempts to measure these amounts have been made in the past, but the results are conflicting and inconclusive. The advent of wide angle, laser pulsed atom probe tomography motivates a new attempt to analyze the matrix. Large datasets are now easily obtained using laser pulsing but quantification is not straightforward due to rather complex mass spectra. Zircaloy-2 contains about 1 wt% tin, 0.1 wt% oxygen and trace amounts of Si, C and Al. Severe overlaps make quantification of any Fe(+), Cr(+) and Ni(+) ions impossible. Quantification of Fe, Cr and Ni therefore requires that they appear as doubly charged ions only, and consequently the field must be kept high enough. In addition, adsorbed CO(+) may appear at the main peak of Fe(2+). In the paper a method is reported, which gives what we believe an accurate quantitative analysis of at least iron and chromium in the matrix.

7.
Ultramicroscopy ; 111(6): 604-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21237570

ABSTRACT

Compared to atom probe analysis of metallic materials, the analysis of carbide phases results in an enhanced formation of molecular ions and multiple events. In addition, many multiple events appear to consist of two or more ions originating from adjacent sites in the material. Due to limitations of the ion detectors measurements generally underestimate the carbon concentration. Analyses using laser-pulsed atom probe tomography have been performed on SiC, WC, Ti(C,N) and Ti(2)AlC grains in different materials as well as on large M(23)C(6) precipitates in steel. Using standard evaluation methods, the obtained carbon concentration was 6-24% lower than expected from the known stoichiometry. The results improved remarkably by using only the (13)C isotope, and calculating the concentration of (12)C from the natural isotope abundance. This confirms that the main reason for obtaining a too low carbon concentration is the dead time of the detector, mainly affecting carbon since it is more frequently evaporated as multiple ions. In the case of Ti(C,N) and Ti(2)AlC an additional difficulty arises from the overlap between C(2)(+), C(4)(2+) and Ti(2+) at the mass-to-charge 24 Da.

SELECTION OF CITATIONS
SEARCH DETAIL
...