Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 15300, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961160

ABSTRACT

High Latitude fjords can serve as sediment trap, bearing different type of proxies, from geochemical to micropaleontological ones, making them exceptional tools for paleoenvironmental reconstruction. However, some unconventional proxies can be present and can be used to depict a comprehensive and exhaustive interpretation of past changes. Here, studying a sediment core in Edisto Inlet (Ross Sea, Antarctica) we used irregular echinoid spines and ophiuroids (Ophionotus victoriae) ossicles to trace environmental changes throughout the last 3.6 kyrs BP. Irregular echinoids can serve as proxy for the organic matter content, while O. victoriae ossicles can be used as proxy for steady sea-ice cycle along with organic deposition events. O. victoriae release a high number of ossicles, making estimation about the population quite challenging; still, presence data, can be easily collected. By applying Generative Additive Models to the stratigraphical distribution of these data, we detected an environmental phase that was previously unnoticed by other traditional proxies: the Ophiuroid Optimum (2-1.5 kyrs BP). In conclusion, here we demonstrate how echinoderm presence can be used as a valuable source of information, while proving the potential of modelling binary data to detect long-term trend in Holocene stratigraphical records.


Subject(s)
Echinodermata , Fossils , Geologic Sediments , Antarctic Regions , Animals , Geologic Sediments/analysis , Paleontology/methods
2.
Proc Biol Sci ; 291(2023): 20232832, 2024 May.
Article in English | MEDLINE | ID: mdl-38747704

ABSTRACT

Asexual reproduction by means of splitting, also called fissiparity, is a common feature in some asterozoan groups, especially in ophiactid brittle stars. Most fissiparous brittle stars show six instead of the usual five rays, live as epibionts on host organisms, and use clonal fragmentation to rapidly colonize secluded habitats and effectively expand the margins of their distribution area. While the biology and ecology of clonal fragmentation are comparatively well understood, virtually nothing is known about the evolution and geological history of that phenomenon. Here, we describe an exceptional fossil of an articulated six-armed brittle star from the Late Jurassic of Germany, showing one body half in the process of regeneration, and assign it to the new species Ophiactis hex sp. nov. Phylogenetic inference shows that the fossil represents the oldest member of the extant family Ophiactidae. Because the Ophiactis hex specimen shows an original six-fold symmetry combined with a morphology typically found in epizoic ophiuroids, in line with recent fissiparous ophiactid relatives, we assume that the regenerating body half is an indication for fissiparity. Ophiactis hex thus shows that fissiparity was established as a means of asexual reproduction in asterozoan echinoderms by the Late Jurassic.


Subject(s)
Echinodermata , Fossils , Phylogeny , Reproduction, Asexual , Animals , Fossils/anatomy & histology , Echinodermata/anatomy & histology , Echinodermata/physiology , Biological Evolution , Germany
4.
PLoS One ; 18(10): e0292636, 2023.
Article in English | MEDLINE | ID: mdl-37878550

ABSTRACT

For the first time, ophiuroids have been found in South African strata predating the lowermost Bokkeveld Group. These comprise natural moulds and casts from two localities in the 'upper unit' of the Baviaanskloof Formation (Table Mountain Group). As a Pragian to earliest Emsian age has been inferred for this member, the new taxa comprise the earliest high-palaeolatitude ophiuroid records from southern Gondwana. Morphological analysis of the specimens revealed the presence of two distinct taxa. One is here described as Krommaster spinosus gen. et sp. nov., a new encrinasterid characterised by very large spines on the dorsal side of the disc, the ventral interradial marginal plates and the arm midlines. The second taxon is a poorly preserved specimen of Hexuraster weitzi, a cheiropterasterid previously described from the slightly younger Bokkeveld Group.


Subject(s)
Echinodermata , Fossils , South Africa , Echinodermata/classification , Fossils/anatomy & histology
5.
Sci Rep ; 13(1): 17558, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845269

ABSTRACT

The emergence of gigantic pliosaurid plesiosaurs reshaped the trophic structure of Mesozoic marine ecosystems, and established an ~ 80 million-year (Ma) dynasty of macropredatory marine reptiles. However, the timescale of their 'defining' trait evolution is incompletely understood because the fossil record of gigantic pliosaurids is scarce prior to the late-Middle Jurassic (Callovian), ~ 165.3 Ma. Here, we pinpoint the appearance of large body size and robust dentitions to early-Middle Jurassic (Bajocian) pliosaurids from northeastern France and Switzerland. These specimens include a new genus that sheds light on the nascent diversification of macropredatory pliosaurids occurring shortly after the Early-Middle Jurassic transition, around ~ 171 Ma. Furthermore, our multivariate assessment of dental character states shows that the first gigantic pliosaurids occupied different morphospace from coeval large-bodied rhomaleosaurid plesiosaurs, which were dominant in the Early Jurassic but declined during the mid-Jurassic, possibly facilitating the radiation and subsequent ecomorph acme of pliosaurids. Finally, we posit that while the emergence of macropredatory pliosaurids was apparently coordinated with regional faunal turnover in the epeiric basins of Europe, it paralleled a globally protracted extinction of other higher trophic-level marine reptiles that was not completed until after the earliest-Late Jurassic, ~ 161.5 Ma.

6.
Zootaxa ; 5124(1): 1-49, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35391140

ABSTRACT

The ophiuroid fauna of the le Amsterdam and le Saint-Paul territories (SPA) is reviewed. Four new species are described: Ophiolebes felli, Ophiolebes paulensis, Ophiocomina arnaudi and Amphiura remota. Recent phylogenetic results required a partial reorganisation of Ophiacanthidae and Amphiuridae genera, including the transfer of some Ophiacantha and Ophiomitrella species to a new genus Ophiosabine (O. rosea, O. anomala, O. aristata, O. cuspidata, O. densispina, O. nodosa, O. notata, O. parcita, O. pentactis, O. vivipara, O. wolfarntzi) and existing genera Ophiosemnotes (O. conferta, O. ingrata, O. corynephora, O. clavigera, O. hamata) and Ophiolebes (O. yaldwyni), Ophiacantha spectabilis to Ophiotreta in the Ophiotomidae, and some Amphioplus species to Amphiura (A, acutus, A. ctenacantha, A. cipus). The combination Ophiophycis nixastrum is restored. The SPA endemic species Ophiocten lymani and Amphiura brevispina, and the southern Australian/New Zealand species Ophiactis cuspidata and Ophiocten australis, are recognised as valid species. The North Atlantic species Ophiura ljungmani, Ophiacantha veterna, Ophiosabine cuspidata, Ophiolimna bairdi and Ophiactis nidarosiensis are recorded from the southern Indian Ocean. Shallow water specimens of Ophiura ljungmani from the Western Atlantic are re-identified as O. fallax and O. acervata. The monotypic Ophiothauma heptactis from northern Australia is synonymised with Ophiocomella sexradia and thus the genus Ophiothauma with Ophiocomella. The biogeography of the ophiuroid fauna reflects the position of the islands near the eastward-flowing currents of the South Indian Ocean gyre. The closest affinities are with faunas in the SW Indian Ocean and SE Atlantic Ocean. Despite its proximity, no species are shared with the Kerguelen Plateau to the south. The large temperature gradient across the subtropical front between le Saint-Paul and Kerguelen appears to be a distribution limit for littoral and upper bathyal invertebrates.


Subject(s)
Coleoptera , Echinodermata , Animals , Australia , Indian Ocean , Phylogeny
8.
Commun Biol ; 5(1): 14, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013524

ABSTRACT

Pivotal anatomical innovations often seem to appear by chance when viewed through the lens of the fossil record. As a consequence, specific driving forces behind the origination of major organismal clades generally remain speculative. Here, we present a rare exception to this axiom by constraining the appearance of a diverse animal group (the living Ophiuroidea) to a single speciation event rather than hypothetical ancestors. Fossils belonging to a new pair of temporally consecutive species of brittle stars (Ophiopetagno paicei gen. et sp. nov. and Muldaster haakei gen. et sp. nov.) from the Silurian (444-419 Mya) of Sweden reveal a process of miniaturization that temporally coincides with a global extinction and environmental perturbation known as the Mulde Event. The reduction in size from O. paicei to M. haakei forced a structural simplification of the ophiuroid skeleton through ontogenetic retention of juvenile traits, thereby generating the modern brittle star bauplan.


Subject(s)
Biological Evolution , Echinodermata/anatomy & histology , Environment , Fossils/anatomy & histology , Animals , Echinodermata/classification , Life History Traits , Phylogeny , Sweden
9.
R Soc Open Sci ; 8(8): 210643, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34457344

ABSTRACT

Understanding of the evolutionary history of the ophiuroids, or brittle stars, is hampered by a patchy knowledge of the fossil record. Especially, the stem members of the living clades are poorly known, resulting in blurry concepts of the early clade evolution and imprecise estimates of divergence ages. Here, we describe new ophiuroid fossil from the Lower Jurassic of France, Luxembourg and Austria and introduce the new taxa Ophiogojira labadiei gen. et sp. nov. from lower Pliensbachian shallow sublittoral deposits, Ophiogojira andreui gen. et sp. nov. from lower Toarcian shallow sublittoral deposits and Ophioduplantiera noctiluca gen. et sp. nov. from late Sinemurian to lower Pliensbachian bathyal deposits. A Bayesian morphological phylogenetic analysis shows that Ophiogojira holds a basal position within the order Ophiurida, whereas Ophioduplantiera has a more crownward position within the ophiurid family Ophiuridae. The position of Ophioduplantiera in the evolutionary tree suggests that family-level divergences within the Ophiurida must have occurred before the late Sinemurian, and that ancient slope environments played an important role in fostering early clade evolution.

10.
Proc Biol Sci ; 288(1953): 20210684, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34130505

ABSTRACT

The deep-seafloor in the tropical Indo-Pacific harbours a rich and diverse benthic fauna with numerous palaeoendemics. Here, we describe a new species, genus and family of brittle-star (Ophiuroidea) from a single eight-armed specimen collected from a depth between 360 and 560 m on Banc Durand, a seamount east of New Caledonia. Leveraging a robust, fossil-calibrated (265 kbp DNA) phylogeny for the Ophiuroidea, we estimate the new lineage diverged from other ophiacanthid families in the Late Triassic or Jurassic (median = 187-178 Myr, 95% CI = 215-143 Myr), a period of elevated diversification for this group. We further report very similar microfossil remains from Early Jurassic (180 Myr) sediments of Normandy, France. The discovery of a new ancient lineage in the relatively well-known Ophiuroidea indicates the importance of ongoing taxonomic research in the deep-sea, an environment increasingly threatened by human activities.


Subject(s)
Echinodermata , Fossils , Animals , France , Humans , New Caledonia , Phylogeny
11.
PeerJ ; 9: e10647, 2021.
Article in English | MEDLINE | ID: mdl-33665003

ABSTRACT

Even though a handful of long-lived reptilian clades dominated Mesozoic marine ecosystems, several biotic turnovers drastically changed the taxonomic composition of these communities. A seemingly slow paced, within-geological period turnover took place across the Early-Middle Jurassic transition. This turnover saw the demise of early neoichthyosaurians, rhomaleosaurid plesiosaurians and early plesiosauroids in favour of ophthalmosaurid ichthyosaurians and cryptoclidid and pliosaurid plesiosaurians, clades that will dominate the Late Jurassic and, for two of them, the entire Early Cretaceous as well. The fossil record of this turnover is however extremely poor and this change of dominance appears to be spread across the entire middle Toarcian-Bathonian interval. We describe a series of ichthyosaurian and plesiosaurian specimens from successive geological formations in Luxembourg and Belgium that detail the evolution of marine reptile assemblages across the Early-Middle Jurassic transition within a single area, the Belgo-Luxembourgian sub-basin. These fossils reveal the continuing dominance of large rhomaleosaurid plesiosaurians, microcleidid plesiosaurians and Temnodontosaurus-like ichthyosaurians up to the latest Toarcian, indicating that the structuration of the upper tier of Western Europe marine ecosystems remained essentially constant up to the very end of the Early Jurassic. These fossils also suddenly record ophthalmosaurid ichthyosaurians and cryptoclidid plesiosaurians by the early Bajocian. These results from a geographically-restricted area provide a clearer picture of the shape of the marine reptile turnover occurring at the early-Middle Jurassic transition. This event appears restricted to the sole Aalenian stage, reducing the uncertainty of its duration, at least for ichthyosaurians and plesiosaurians, to 4 instead of 14 million years.

12.
Zootaxa ; 5071(3): 369-383, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-35390905

ABSTRACT

The Lower Triassic fossil record of brittle stars is relatively rich, yet most records published to date are based on poorly preserved or insufficiently known fossils. This hampers exhaustive morphological analyses, comparison with recent relatives or inclusion of Early Triassic ophiuroid taxa in phylogenetic estimates. Here, we describe a new ophiuroid from the Lower Triassic of Nevada, preserved as phosphatized skeletal parts and assigned to the new taxon Ophiosuperstes praeparvus gen. et sp. nov Maxwell, V. Pruss. S.B. This unusual preservation of the fossils allowed for acid-extraction of an entire suite of dissociated skeletal parts, including lateral arm plates, ventral arm plates, vertebrae and various disk plates, thus unlocking sufficient morphological information to explore the phylogenetic position of the new taxon. Bayesian phylogenetic inference suggests a basalmost position of O. praeparvus within the Ophintegrida, sister to all other sampled members of that superorder. The existence of coeval but more derived ophiuroids suggests that O. praeparvus probably represents a member of a more ancient stem ophintegrid group persisting into the Early Triassic.


Subject(s)
Biological Evolution , Echinodermata , Animals , Bayes Theorem , Fossils , Nevada , Phylogeny
13.
Zootaxa ; 4820(1): zootaxa.4820.1.2, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-33056080

ABSTRACT

Identifiable remains of large deep-sea invertebrates are exceedingly rare in the fossil record. Thus, every new discovery adds to a better understanding of ancient deep-sea environments based on direct fossil evidence. Here we describe a collection of dissociated skeletal parts of ophiuroids (brittle stars) from the latest Pliocene to earliest Pleistocene of Sicily, Italy, preserved as microfossils in sediments deposited at shallow bathyal depths. The material belongs to a previously unknown species of ophiacanthid brittle star, Ophiacantha oceani sp. nov. On the basis of morphological comparison of skeletal microstructures, in particular spine articulations and vertebral articular structures of the lateral arm plates, we conclude that the new species shares closest ties with Ophiacantha stellata, a recent species living in the present-day Caribbean at bathyal depths. Since colonization of the deep Mediterranean following the Messinian crisis at the end of the Miocene was only possibly via the Gibraltar Sill, the presence of tropical western Atlantic clades in the Plio-Pleistocene of the Mediterranean suggests a major deep-sea faunal turnover yet to be explored.


Subject(s)
Echinodermata , Fossils , Animals , Caribbean Region
14.
PeerJ ; 8: e9671, 2020.
Article in English | MEDLINE | ID: mdl-32904070

ABSTRACT

A new species of brittle star, Ophiomitrella floorae, is recorded from the lower two meters of the Gronsveld Member (Maastricht Formation), of late Maastrichtian age (c. 66.7 Ma). These relatively fine-grained biocalcarenites reflect shallow-water deposition in a sheltered setting with a relatively firm sea floor and clear waters, under middle sublittoral and subtropical conditions. Associated echinoderm taxa comprise more robust, sturdy-plated ophiomusaid and ophiodermatid brittle stars and numerous bourgueticrinine sea lilies. The new brittle star described herein belongs to a family whose present-day members are predominantly restricted to bathyal depths. Its small size and the exceptional preservation of a single articulated specimen partially wrapped around the stalk of a bourgueticrinine suggest that O. floorae n. sp. was probably epizoic and specifically associated with stalked crinoids.

15.
PeerJ ; 7: e8008, 2019.
Article in English | MEDLINE | ID: mdl-31741791

ABSTRACT

The genus Astrophiura, which ranks among the most extraordinary of modern brittle stars, is the type genus of the recently resurrected family Astrophiuridae within the order Ophiurida. On account of its absurdly enlarged and strongly modified lateral arm plates, Astrophiura bears a closer resemblance to a pentagonal starfish than to a typical ophiuroid. Although molecular evidence suggests an ancient origin of the Astrophiuridae, dating back at least to the Early Jurassic, not a single fossil astrophiurid has been reported so far. Here, we describe dissociated lateral arm plates from the Campanian of Cringleford near Norwich, UK, and the Maastrichtian of Rügen, Germany (both Upper Cretaceous) with unambiguous astrophiurid affinities and assign these to a new species, Astrophiura markbeneckei. This represents the first fossil record of the family. In addition, the Rügen material included lateral arm plates that superficially resemble those of A. markbeneckei sp. nov. but differ in having spine articulations that are typical of the ophionereidoid family Amphilimnidae. We assign these plates to a new genus and species, Astrosombra rammsteinensis, an extinct amphilimnid with morphological modifications similar to those of Astrophiura, and thus representing a remarkable case of parallel evolution amongst brittle stars looking like starfish.

16.
Sci Rep ; 8(1): 9617, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29941907

ABSTRACT

Articulated brittle stars are rare fossils because the skeleton rapidly disintegrates after death and only fossilises intact under special conditions. Here, we describe an extraordinary mass occurrence of the ophiacanthid ophiuroid Brezinacantha tolis gen. et sp. nov., preserved as articulated skeletons from an upper Campanian (Late Cretaceous) methane seep of South Dakota. It is uniquely the first fossil case of a seep-associated ophiuroid. The articulated skeletons overlie centimeter-thick accumulations of dissociated skeletal parts, suggesting lifetime densities of approximately 1000 individuals per m2, persisting at that particular location for several generations. The ophiuroid skeletons on top of the occurrence were preserved intact most probably because of increased methane seepage, killing the individuals and inducing rapid cementation, rather than due to storm-induced burial or slumping. The mass occurrence described herein is an unambiguous case of an autochthonous, dense ophiuroid community that persisted at a particular spot for some time. Thus, it represents a true fossil equivalent of a recent ophiuroid dense bed, unlike other cases that were used in the past to substantiate the claim of a mid-Mesozoic predation-induced decline of ophiuroid dense beds.

17.
Sci Rep ; 8(1): 8493, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855566

ABSTRACT

Euryalids, which include the spectacular basket stars, form a morphologically aberrant group of brittle stars. Surprisingly, the most recent molecular work found them to be sister to ophiurid brittle stars, thus challenging the traditional dichotomy between euryalids and non-euryalids, and leaving an enormous ghost lineage of more than 100 million years between the oldest unambiguous euryalid fossils and their predicted divergence from ophiurids during the Triassic. Here we examine both previously known and newly collected fossils to explore the evolutionary history of euryalids. A morphology-based phylogenetic estimate confirms the Triassic Aspiduriella as a basal member of the euryalid clade that superficially resembles members of the living ophiurid sister clades. Furthermore, we use lateral arm plates and vertebrae to identify two new Jurassic ophiuroids, Melusinaster alissawhitegluzae and Melusinaster arcusinimicus, as early euryalids that are morphologically intermediate between Aspiduriella and extant euryalids. Our phylogenetic analysis is the first to combine data from completely preserved skeletons and from microfossils in order to bridge morphological and stratigraphical gaps between the sampled taxa. It fills a major gap in the fossil record of euryalids and sets a robust phylogenetic framework to understand the morphological transition from ophiurid-like ancestors to the typical modern euryalids better.

18.
Sci Adv ; 3(2): e1602159, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28246643

ABSTRACT

In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.


Subject(s)
Aquatic Organisms/physiology , Biological Evolution , Ecosystem , Fossils , Phylogeny , Animals
19.
Mol Phylogenet Evol ; 107: 415-430, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27940329

ABSTRACT

The power and throughput of next-generation sequencing is instigating a major transformation in our understanding of evolution and classification of life on our planet. The new trees of life are robust and comprehensive. Here we provide a landmark phylogeny of the living ophiuroids and use it as the basis for a major revision of the higher classification of this class of marine invertebrates. We used an exon-capture system to generate a 1484 exon (273kbp) data-matrix from DNA extracted from ethanol-preserved museum samples. We successfully obtained an average of 90% of our target sequence from 576 species spread across the known taxonomic diversity. The topology of the major lineages was robust to taxon sampling, exon-sampling, models and methods. However, estimates of node age were much less precise, varying by about a quarter of mean age. We used a combination of phylogenetic distinctiveness and temporal-banding to guide our revision of the family-level classification. Empirically, we determined that limiting family crown age to 110±10Ma (mid Cretaceous) selected phylogenetically distinct nodes while minimising disruption to the existing taxonomy. The resulting scheme of 32 families and six orders considerably expands the number of higher taxa. The families are generally longitudinally widespread across the world's oceans, although 17 are largely confined to temperate and equatorial latitudes and six to relatively shallow water (less than 1000m depth).


Subject(s)
Echinodermata/classification , Echinodermata/genetics , Genomics , Phylogeny , Animals , Databases, Genetic , Exons/genetics , Transcriptome/genetics
20.
PLoS One ; 11(5): e0156140, 2016.
Article in English | MEDLINE | ID: mdl-27227685

ABSTRACT

Ophiuroid systematics is currently in a state of upheaval, with recent molecular estimates fundamentally clashing with traditional, morphology-based classifications. Here, we attempt a long overdue recast of a morphological phylogeny estimate of the Ophiuroidea taking into account latest insights on microstructural features of the arm skeleton. Our final estimate is based on a total of 45 ingroup taxa, including 41 recent species covering the full range of extant ophiuroid higher taxon diversity and 4 fossil species known from exceptionally preserved material, and the Lower Carboniferous Aganaster gregarius as the outgroup. A total of 130 characters were scored directly on specimens. The tree resulting from the Bayesian inference analysis of the full data matrix is reasonably well resolved and well supported, and refutes all previous classifications, with most traditional families discredited as poly- or paraphyletic. In contrast, our tree agrees remarkably well with the latest molecular estimate, thus paving the way towards an integrated new classification of the Ophiuroidea. Among the characters which were qualitatively found to accord best with our tree topology, we selected a list of potential synapomorphies for future formal clade definitions. Furthermore, an analysis with 13 of the ingroup taxa reduced to the lateral arm plate characters produced a tree which was essentially similar to the full dataset tree. This suggests that dissociated lateral arm plates can be analysed in combination with fully known taxa and thus effectively unlocks the extensive record of fossil lateral arm plates for phylogenetic estimates. Finally, the age and position within our tree implies that the ophiuroid crown-group had started to diversify by the Early Triassic.


Subject(s)
Biological Evolution , Echinodermata/anatomy & histology , Echinodermata/classification , Fossils/anatomy & histology , Phylogeny , Animals , Bayes Theorem
SELECTION OF CITATIONS
SEARCH DETAIL
...