Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 23(2): 432-42, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20092276

ABSTRACT

Water-soluble and particulate cadmium compounds are carcinogenic to humans. While direct interactions with DNA are unlikely to account for carcinogenicity, induction of oxidative DNA damage and interference with DNA repair processes might be more relevant underlying modes of action (recently summarized, for example, in Joseph , P. (2009) Tox. Appl. Pharmacol. 238 , 271 - 279). The present study aimed to compare genotoxic effects of particulate CdO and soluble CdCl(2) in cultured human cells (A549, VH10hTert). Both cadmium compounds increased the baseline level of oxidative DNA damage. Even more pronounced, both cadmium compounds inhibited the nucleotide excision repair (NER) of BPDE-induced bulky DNA adducts and UVC-induced photolesions in a dose-dependent manner at noncytotoxic concentrations. Thereby, the uptake of cadmium in the nuclei strongly correlated with the repair inhibition of bulky DNA adducts, indicating that independent of the cadmium compound applied Cd(2+) is the common species responsible for the observed repair inhibition. Regarding the underlying molecular mechanisms in human cells, CdCl(2) (as shown before by Meplan, C., Mann, K. and Hainaut, P. (1999) J. Biol. Chem. 274 , 31663 - 31670 ) and CdO altered the conformation of the zinc binding domain of the tumor suppressor protein p53. In further studies applying only CdCl(2), cadmium decreased the total nuclear protein level of XPC, which is believed to be the principle initiator of global genome NER. This led to diminished association of XPC to sites of local UVC damage, resulting in decreased recruitment of further NER proteins. Additionally, CdCl(2) strongly disturbed the disassembly of XPC and XPA. In summary, our data indicate a general nucleotide excision repair inhibition by cadmium compounds, which is most likely caused by a diminished assembly and disassembly of the NER machinery. These data reveal new insights into the mechanisms involved in cadmium carcinogenesis and provide further evidence that DNA repair inhibition may be one predominant mechanism in cadmium induced carcinogenicity.


Subject(s)
Cadmium Compounds/toxicity , Carcinogens/toxicity , DNA Damage/drug effects , DNA Repair/drug effects , Cells, Cultured , Humans , Microscopy, Electron, Scanning , Models, Biological , Oxidative Stress , Particle Size , Solubility
2.
DNA Repair (Amst) ; 6(1): 61-70, 2007 Jan 04.
Article in English | MEDLINE | ID: mdl-17011244

ABSTRACT

The underlying mechanisms of arsenic carcinogenicity are still not fully understood. Mechanisms currently discussed include the induction of oxidative DNA damage and the interference with DNA repair pathways. Still unclear is the role of biomethylation, which has long been considered to be one major detoxification process. Methylated arsenicals have recently been shown to interfere with DNA repair in cellular and subcellular systems, but up to now no DNA repair protein has been identified being particular sensitive towards methylated arsenicals in cultured cells. Here we report that the trivalent methylated metabolites MMA(III) and DMA(III) inhibit poly(ADP-ribosyl)ation in cultured human HeLa S3 cells at concentrations as low as 1nM, thereby showing for the first time an inactivation of an enzymatic reaction related to DNA repair by the trivalent methylated arsenicals at very low environmentally relevant concentrations. In contrast the pentavalent metabolites MMA(V) and DMA(V) showed no such effects up to high micromolar concentrations. All investigated arsenicals did not alter gene expression of PARP-1. However, all trivalent arsenicals were able to inhibit the activity of isolated PARP-1, indicating that the observed decrease in poly(ADP-ribosyl)ation in cultures human cells, predominantly mediated by PARP-1, is likely due to changes in the activity of PARP-1. Since poly(ADP-ribosyl)ation plays a major role in DNA repair, cell cycle control and thus in the maintenance of genomic stability, these findings could in part explain DNA repair inhibition and the genotoxic and carcinogenic effects of arsenic.


Subject(s)
Arsenites/pharmacology , DNA/drug effects , Gene Expression Regulation, Enzymologic/physiology , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Teratogens/pharmacology , Arsenites/chemistry , DNA Damage/drug effects , DNA Repair , HeLa Cells/drug effects , Humans , Methylation , Oxidation-Reduction , Poly (ADP-Ribose) Polymerase-1 , Teratogens/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...