Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Physiol Mol Biol Plants ; 29(3): 377-392, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37033764

ABSTRACT

Utilisation of calcium lignosulfonate (CaLS) in Vanilla planifolia has been reported to improve shoot multiplication. However, mechanisms responsible for such observation remain unknown. Here, we elucidated the underlying mechanisms of CaLS in promoting shoot multiplication of V. planifolia via comparative proteomics, biochemical assays, and nutrient analysis. The proteome profile of CaLS-treated plants showed enhancement of several important cellular metabolisms such as photosynthesis, protein synthesis, Krebs cycle, glycolysis, gluconeogenesis, and carbohydrate synthesis. Further biochemical analysis recorded that CaLS increased Rubisco activity, hexokinase activity, isocitrate dehydrogenase activity, total carbohydrate content, glutamate synthase activity and total protein content in plant shoot, suggesting the role of CaLS in enhancing shoot growth via upregulation of cellular metabolism. Subsequent nutrient analysis showed that CaLS treatment elevated the contents of several nutrient ions especially calcium and sodium ions. In addition, our study also revealed that CaLS successfully maintained the cellular homeostasis level through the regulation of signalling molecules such as reactive oxygen species and calcium ions. These results demonstrated that the CaLS treatment can enhance shoot multiplication in V. planifolia Andrews by stimulating nutrient uptake, inducing cell metabolism, and regulating cell homeostasis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01293-w.

2.
Sci Rep ; 12(1): 19639, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385165

ABSTRACT

Banana (Musa acuminata) is an important fruit crop and source of income for various countries, including Malaysia. To date, current agrochemical practice has become a disputable issue due to its detrimental effect on the environment. λ-carrageenan, a natural polysaccharide extracted from edible red seaweed, has been claimed to be a potential plant growth stimulator. Hence, the present study investigates the effects of λ-carrageenan on plant growth using Musa acuminata cv. Berangan (AAA). Vegetative growth such as plant height, root length, pseudostem diameter, and fresh weight was improved significantly in λ-carrageenan-treated banana plants at an optimum concentration of 750 ppm. Enhancement of root structure was also observed in optimum λ-carrageenan treatment, facilitating nutrients uptake in banana plants. Further biochemical assays and gene expression analysis revealed that the increment in growth performance was consistent with the increase of chlorophyll content, protein content, and phenolic content, suggesting that λ-carrageenan increases photosynthesis rate, protein biosynthesis, and secondary metabolites biosynthesis which eventually stimulate growth. Besides, λ-carrageenan at optimum concentration also increased catalase and peroxidase activities, which led to a significant reduction in hydrogen peroxide and malondialdehyde, maintaining cellular homeostasis in banana plants. Altogether, λ-carrageenan at optimum concentration improves the growth of banana plants via inducing metabolic processes, enhancing nutrient uptake, and regulation of cell homeostasis. Further investigations are needed to evaluate the effectiveness of λ-carrageenan on banana plants under field conditions.


Subject(s)
Musa , Musa/genetics , Carrageenan/pharmacology , Carrageenan/metabolism , Plant Development , Nutrients , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...