Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Math Biol ; 85(5): 52, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36241956

ABSTRACT

How to determine the spatial distribution and population dynamics of animals are some of the key questions in ecology. These two have been coupled before, but there is no general method for determining spatial distributions based on instantanous behavior coupled with population dynamics. We propose modeling interacting populations with instantaneous habitat choice through mean-field games. By using the framework of variational inequalities, we are able to determine existence and uniqueness for habitat distributions of interacting populations, in both continuous and discrete habitats. With some additional restrictions, we are also able to show existence and uniqueness of fixed-points of the population dynamics along with spatial distributions. We illustrate our theoretical results by studying a Rosenzweig-MacArthur model where predators and consumers inhabit a continuous habitat. This study is conducted both theoretically and numerically. Analyzing the emergent dynamics is possible as viewing the system from the vantage point of variational inequalities allows for applying efficient numerical methods. The generality of our theoretical approach opens up for studying complex ecosystems, e.g. the impact of enrichment on spatial distributions in marine ecosystems.


Subject(s)
Ecosystem , Predatory Behavior , Animals , Ecology , Models, Biological , Population Dynamics
2.
Theor Popul Biol ; 146: 36-45, 2022 08.
Article in English | MEDLINE | ID: mdl-35777532

ABSTRACT

Game theory has emerged as an important tool to understand interacting populations in the last 50 years. Game theory has been applied to study population dynamics with optimal behavior in simple ecosystem models, but existing methods are generally not applicable to complex systems. In order to use game-theory for population dynamics in heterogeneous habitats, habitats are usually split into patches and game-theoretic methods are used to find optimal patch distributions at every instant. However, populations in the real world interact in continuous space, and the assumption of decisions based on perfect information is a large simplification. Here, we develop a method to study population dynamics for interacting populations, distributed optimally in continuous space. A continuous setting allows us to model bounded rationality, and its impact on population dynamics. This is made possible by our numerical advances in solving multiplayer games in continuous space. Our approach hinges on reformulating the instantaneous game, applying an advanced discretization method and modern optimization software to solve it. We apply the method to an idealized case involving the population dynamics and vertical distribution of forage fish preying on copepods. Incorporating continuous space and time, we can model the seasonal variation in the migration, separating the effects of light and population numbers. We arrive at qualitative agreement with empirical findings. Including bounded rationality gives rise to spatial distributions corresponding to reality, while the population dynamics for bounded rationality and complete rationality are equivalent. Our approach is general, and can easily be used for complex ecosystems.


Subject(s)
Ecosystem , Predatory Behavior , Animals , Game Theory , Humans , Population Dynamics , Seasons
3.
J Theor Biol ; 517: 110631, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33600827

ABSTRACT

Size-spectrum models are a recent class of models describing the dynamics of a whole community based on a description of individual organisms. The models are motivated by marine ecosystems where they cover the size range from multicellular plankton to the largest fish. We propose to extend the size-spectrum model with spatial components. The spatial dynamics is governed by a random motion and a directed movement in the direction of increased fitness, which we call 'fitness-taxis'. We use the model to explore whether spatial irregularities of marine communities can occur due to the internal dynamics of predator-prey interactions and spatial movements. This corresponds to a pattern-formation analysis generalized to an entire ecosystem but is not limited to one prey and one predator population. The analyses take the form of Fourier analysis and numerical experiments. Results show that diffusion always stabilizes the equilibrium but fitness-taxis destabilizes it, leading to non-stationary spatially inhomogeneous population densities, which are travelling in size. However, there is a strong asymmetry between fitness-induced destabilizing effects and diffusion-induced stabilizing effects with the latter dominating over the former. These findings reveal that fitness taxis acts as a possible mechanism behind pattern formations in ecosystems with high diversity of organism sizes, which can drive the emergence of spatial heterogeneity even in a spatially homogeneous environment.


Subject(s)
Ecosystem , Models, Biological , Animals , Diffusion , Food Chain , Plankton , Population Dynamics , Predatory Behavior
4.
Proc Biol Sci ; 286(1911): 20191645, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31551055

ABSTRACT

Diel vertical migration (DVM), the daily movement of organisms through oceanic water columns, is mainly driven by spatio-temporal variations in the light affecting the intensity of predator-prey interactions. Migration patterns of an organism are intrinsically linked to the distribution of its conspecifics, its prey and its predators, each with their own fitness-seeking imperatives. We present a mechanistic, trait-based model of DVM for the different components of a pelagic community. Specifically, we consider size, sensory mode and feeding mode as key traits, representing a community of copepods that prey on each other and are, in turn, preyed upon by fish. Using game-theoretic principles, we explore the optimal distribution of the main groups of a planktonic pelagic food web simultaneously. Within one single framework, our model reproduces a whole suite of observed patterns, such as size-dependent DVM patterns of copepods and reverse migrations. These patterns can only be reproduced when different trophic levels are considered at the same time. This study facilitates a quantitative understanding of the drivers of DVM, and is an important step towards mechanistically underpinned predictions of DVM patterns and biologically mediated carbon export.


Subject(s)
Animal Migration , Copepoda/physiology , Food Chain , Models, Statistical , Animals , Game Theory , Oceans and Seas , Plankton
5.
Ecology ; 97(7): 1852-1861, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27859170

ABSTRACT

Bigeye tuna are known for remarkable daytime vertical migrations between deep water, where food is abundant but the water is cold, and the surface, where water is warm but food is relatively scarce. Here we investigate if these dive patterns can be explained by dynamic optimal foraging theory, where the tuna maximizes its energy harvest rate. We assume that foraging efficiency increases with body temperature, so that the vertical migrations are thermoregulatory. The tuna's state is characterized by its mean body temperature and depth, and we solve the optimization problem numerically using dynamic programming. With little calibration of model parameters, our results are consistent with observed data on vertical movement: we find that small tuna should display constant-depth strategies while large tuna should display vertical migrations. The analysis supports the hypothesis that the tuna behaves such as to maximize its energy gains. The model therefore provides insight into the processes underlying observed behavioral patterns and allows generating predictions of foraging behavior in unobserved environments.


Subject(s)
Feeding Behavior/physiology , Tuna/physiology , Animal Migration , Animals , Body Temperature , Ecology
6.
Appl Environ Microbiol ; 81(21): 7385-93, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26253668

ABSTRACT

An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration.


Subject(s)
Bacteria/enzymology , Bacteria/metabolism , Enzymes/metabolism , Models, Biological
7.
Biol Lett ; 8(5): 809-12, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-22535640

ABSTRACT

The comb jelly Mertensia ovum, widely distributed in Arctic regions, has recently been discovered in the northern Baltic Sea. We show that M. ovum also exists in the central Baltic but that the population consists solely of small-sized larvae (less than 1.6 mm). Despite the absence of adults, eggs were abundant. Experiments revealed that the larvae were reproductively active. Egg production and anticipated mortality rates suggest a self-sustaining population. This is the first account of a ctenophore population entirely recruiting through larval reproduction (paedogenesis). We hypothesize that early reproduction is favoured over growth to compensate for high predation pressure.


Subject(s)
Ctenophora/physiology , Larva/physiology , Animals , Baltic States , DNA/metabolism , Geography , Metamorphosis, Biological , Oceans and Seas , Predatory Behavior , Reproduction , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...