Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675130

ABSTRACT

Ozone (O3) is an air pollutant that primarily damages the lungs, but growing evidence supports the idea that O3 also harms the brain; acute exposure to O3 has been linked to central nervous system (CNS) symptoms such as depressed mood and sickness behaviors. However, the mechanisms by which O3 inhalation causes neurobehavioral changes are limited. One hypothesis is that factors in the circulation bridge communication between the lungs and brain following O3 exposure. In this study, our goals were to characterize neurobehavioral endpoints of O3 exposure as they relate to markers of systemic and pulmonary inflammation, with a particular focus on serum amyloid A (SAA) and kynurenine as candidate mediators of O3 behavioral effects. We evaluated O3-induced dose-, time- and sex-dependent changes in pulmonary inflammation, circulating SAA and kynurenine and its metabolic enzymes, and sickness and depressive-like behaviors in Balb/c and CD-1 mice. We found that 3 parts per million (ppm) O3, but not 2 or 1 ppm O3, increased circulating SAA and lung inflammation, which were resolved by 48 h and was worse in females. We also found that indoleamine 2,3-dioxygenase (Ido1) mRNA expression was increased in the brain and spleen 24 h after 3 ppm O3 and that kynurenine was increased in blood. Sickness and depressive-like behaviors were observed at all O3 doses (1-3 ppm), suggesting that behavioral responses to O3 can occur independently of increased SAA or neutrophils in the lungs. Using SAA knockout mice, we found that SAA did not contribute to O3-induced pulmonary damage or inflammation, systemic increases in kynurenine post-O3, or depressive-like behavior but did contribute to weight loss. Together, these findings indicate that acute O3 exposure induces transient symptoms of sickness and depressive-like behaviors that may occur in the presence or absence of overt pulmonary neutrophilia and systemic increases of SAA. SAA does not appear to contribute to pulmonary inflammation induced by O3, although it may contribute to other aspects of sickness behavior, as reflected by a modest effect on weight loss.


Subject(s)
Ozone , Pneumonia , Female , Mice , Animals , Ozone/toxicity , Serum Amyloid A Protein/metabolism , Kynurenine/metabolism , Lung/metabolism , Pneumonia/metabolism , Phenotype
2.
Lung ; 200(2): 269-275, 2022 04.
Article in English | MEDLINE | ID: mdl-35199228

ABSTRACT

PURPOSE: Anesthetics are required for procedures that deliver drugs/biologics, infectious/inflammatory agents, and toxicants directly to the lungs. However, the possible confounding effects of anesthesia on lung inflammation and injury are underreported. Here, we evaluated the effects of two commonly used anesthetic regimens on lung inflammatory responses to ozone in mice. METHODS: We tested the effects of brief isoflurane (Iso) or ketamine/xylazine/atipamezole (K/X/A) anesthesia prior to ozone exposure (4 h, 3 ppm) on lung inflammatory responses in mice. Anesthesia regimens modeled those used for non-surgical intratracheal instillations and were administered 1-2 h or 24 h prior to initiating ozone exposure. RESULTS: We found that Iso given 1-2 h prior to ozone inhibited inflammatory responses in the lung, and this effect was absent when Iso was given 23-24 h prior to ozone. In contrast, K/X/A given 1-2 h prior to ozone increased lung and systemic inflammation. CONCLUSION: Our results highlight the need to comprehensively evaluate anesthesia as an experimental variable in the assessment of lung inflammation in response to ozone and other inflammatory stimuli.


Subject(s)
Anesthesia , Ozone , Pneumonia , Animals , Humans , Inflammation/chemically induced , Lung , Mice , Ozone/toxicity , Pneumonia/chemically induced
3.
PLoS One ; 13(10): e0205769, 2018.
Article in English | MEDLINE | ID: mdl-30325961

ABSTRACT

Lipopolysaccharide (LPS) is a stimulator of the innate immune system and is routinely used in animal models to study blood-brain barrier (BBB) dysfunction under inflammatory conditions. It is appreciated that both humans and mice have sexually dimorphic immune responses, which could influence the brain's response to a systemic inflammatory insult. Mouse strain is also an important factor that can contribute to pathophysiological responses to inflammatory stimuli. Therefore, we aimed to test whether BBB disruption and the associated cytokine profiles in response to LPS differed in male and female mice from two mouse strains most commonly used in blood-brain barrier studies: CD-1 and C57BL6/J (C57). Mice were treated with saline, a single injection of 0.3, or 3mg/kg LPS, or three injections of 3mg/kg LPS, and studied 28 hours after the first LPS injection. To assay BBB disruption, we utilized the tracer 99mTc-DTPA. A 23-plex panel of cytokines was assayed in brain and blood of the same cohort of mice, which allowed us to compare differences in the levels of individual cytokines as well as correlations among cytokines and 99mTc-DTPA uptake. We found that only the three-injection dose of LPS induced significant BBB disruption in all sexes and strains. The treatment, strain, and sex, as well as treatment-by- strain and treatment-by-sex interactions significantly contributed to the variance. The mean brain/serum ratios of 99mTc-DTPA in the three-injection LPS group were ranked CD-1 male < CD-1 female < C57 male < C57 female. There were significant sex and strain differences in cytokine profiles in brain and blood, and pro-inflammatory cytokines and chemokines in brain were most strongly correlated with 99mTc-DTPA brain/serum ratios.


Subject(s)
Blood-Brain Barrier/immunology , Immunity, Innate/genetics , Animals , Blood-Brain Barrier/drug effects , Brain Chemistry/drug effects , Cytokines/analysis , Cytokines/blood , Dose-Response Relationship, Drug , Female , Immunity, Innate/drug effects , Immunity, Innate/immunology , Inflammation/genetics , Inflammation/immunology , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL/genetics , Mice, Inbred C57BL/immunology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...