Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 44(9): 4853-4862, 2023 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-37699804

ABSTRACT

Studies on runoff are crucial for the scientific allocation, utilization, and development of water resources and can provide an important basis for the prevention and control of flood and drought disaster, as well as water environmental pollution management. Affected by global warming, the frequency and intensity of extreme climate events, particularly extreme precipitation, have significantly changed in recent years, which can directly or indirectly impact runoff changes. In this study, we used the SWAT model to simulate the spatiotemporal variations in runoff in the Yangtze River Basin from 1965 to 2019 and analyzed the response of runoff to precipitation under extreme conditions. The results showed that the changes in total runoff in the Yangtze River Basin were not significantly different from 1965 to 2019. The total runoff and the mid-lower runoff in the basin experienced four stages of "dry-wet-dry-wet." Simulations revealed that under the 50-year extreme precipitation event, the increase in daily average runoff was 6200%, 21%, and 15% for the typical sub-basins of the upper, middle, and lower reaches of the Yangtze River, respectively. Additionally, the increase in monthly and annual average runoff was 355%, 5%, and 1.3% and 78%, 1%, and 0.24%, for upper, middle, and lower reaches of the Yangtze River, respectively. Moreover, under the 100-year extreme precipitation, the average daily runoff increasing rates were 8000%, 25%, and 17% for upper, middle, and lower reaches of the Yangtze River, respectively, compared to the monthly increase of 437%, 7%, and 1.5% and annual increase of 96%, 1.2%, and 0.28%, respectively. Our findings may improve the understanding of hydrological responses to climate change and provide valuable inferences to decision-makers and water managers for better allocation and management of water resources.

2.
Huan Jing Ke Xue ; 44(6): 3321-3328, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-37309950

ABSTRACT

Excessive nitrogen (N) deposition causes a series of environmental problems, including biodiversity loss. Therefore, assessing current N deposition thresholds of natural ecosystems is critical for regional N management and pollution control. In this study, the critical loads of N deposition in mainland China were estimated using the steady-state mass balance method, and the spatial distribution of ecosystems that exceeded the critical load was evaluated. The results showed that areas with critical loads of N deposition higher than 56, in the range of 14-56, and lower than 14 kg·(hm2·a)-1 accounted for 6%, 67%, and 27% of that in China, respectively. The areas with higher critical loads of N deposition were mainly distributed in the eastern Tibetan Plateau, northeastern Inner Mongolia, and parts of south China. Lower critical loads of N deposition were mainly distributed in the western Tibetan Plateau, northwest China, and parts of southeast China. Moreover, the areas where N deposition exceeded the critical loads accounted for 21% of that in mainland China, being mainly distributed in southeast and northeast China. The exceedances of critical loads of N deposition in northeast China, northwest China, and the Qinghai-Tibet Plateau were generally lower than 14 kg·(hm2·a)-1. Therefore, the management and control of N in these areas that exceeded the critical load of deposition is more worthy of future attention.

SELECTION OF CITATIONS
SEARCH DETAIL
...