Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurorehabil Neural Repair ; : 15459683241257519, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812378

ABSTRACT

BACKGROUND: Intensive task-oriented training has shown promise in enhancing distal motor function among patients with chronic stroke. A personalized electromyography (EMG)-driven soft robotic hand was developed to assist task-oriented object-manipulation training effectively. Objective. To compare the effectiveness of task-oriented training using the EMG-driven soft robotic hand. METHODS: A single-blinded, randomized controlled trial was conducted with 34 chronic stroke survivors. The subjects were randomly assigned to the Hand Task (HT) group (n = 17) or the control (CON) group (n = 17). The HT group received 45 minutes of task-oriented training by manipulating small objects with the robotic hand for 20 sessions, while the CON group received 45 minutes of hand-functional exercises without objects using the same robot. Fugl-Meyer assessment (FMA-UE), Action Research Arm Test (ARAT), Modified Ashworth Score (MAS), Box and Block test (BBT), Maximum Grip Strength, and active range of motion (AROM) of fingers were assessed at baseline, after intervention, and 3 months follow-up. The muscle co-contraction index (CI) was analyzed to evaluate the session-by-session variation of upper limb EMG patterns. RESULTS: The HT group showed more significant improvement in FMA-UE (wrist/hand, shoulder/elbow) compared to the CON group (P < .05). At 3-month follow-up, the HT group demonstrated significant improvements in FMA-UE, ARAT, BBT, MAS (finger), and AROMs (P < .05). The HT group exhibited a more significant decrease in muscle co-contractions compared to the CON group (P < .05). CONCLUSIONS: EMG-driven task-oriented training with the personalized soft robotic hand was a practical approach to improving motor function and muscle coordination. CLINICAL TRIAL REGISTRY NAME: Soft Robotic Hand System for Stroke Rehabilitation. CLINICAL TRIAL REGISTRATION-URL: https://clinicaltrials.gov/. UNIQUE IDENTIFIER: NCT03286309.

2.
Article in English | MEDLINE | ID: mdl-38051622

ABSTRACT

EMG-driven robot hand training can facilitate motor recovery in chronic stroke patients by restoring the interhemispheric balance between motor networks. However, the underlying mechanisms of reorganization between interhemispheric regions remain unclear. This study investigated the effective connectivity (EC) between the ventral premotor cortex (PMv), supplementary motor area (SMA), and primary motor cortex (M1) using Dynamic Causal Modeling (DCM) during motor tasks with the paretic hand. Nineteen chronic stroke subjects underwent 20 sessions of EMG-driven robot hand training, and their Action Reach Arm Test (ARAT) showed significant improvement ( ß =3.56, [Formula: see text]). The improvement was correlated with the reduction of inhibitory coupling from the contralesional M1 to the ipsilesional M1 (r=0.58, p=0.014). An increase in the laterality index was only observed in homotopic M1, but not in the premotor area. Additionally, we identified an increase in resting-state functional connectivity (FC) between bilateral M1 ( ß =0.11, p=0.01). Inter-M1 FC demonstrated marginal positive relationships with ARAT scores (r=0.402, p=0.110), but its changes did not correlate with ARAT improvements. These findings suggest that the improvement of hand functions brought about by EMG-driven robot hand training was driven explicitly by task-specific reorganization of motor networks. Particularly, the restoration of interhemispheric balance was induced by a reduction in interhemispheric inhibition from the contralesional M1 during motor tasks of the paretic hand. This finding sheds light on the mechanistic understanding of interhemispheric balance and functional recovery induced by EMG-driven robot training.


Subject(s)
Motor Cortex , Robotics , Stroke , Humans , Magnetic Resonance Imaging , Motor Cortex/physiology , Hand
3.
Neurosci Res ; 186: 21-32, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36220454

ABSTRACT

The neuromodulation effect of anodal tDCS is not thoroughly studied, and the heterogeneous profile of stroke individuals with brain lesions would further complicate the stimulation outcomes. This study aimed to investigate the functional changes in sensorimotor areas induced by anodal tDCS and whether individual electric field could predict the functional outcomes. Twenty-five chronic stroke survivors were recruited and divided into tDCS group (n = 12) and sham group (n = 13). Increased functional connectivity (FC) within the surrounding areas of ipsilesional primary motor cortex (M1) was only observed after anodal tDCS. Averaged FC among the ipsilesional sensorimotor regions was observed to be increased after anodal tDCS (t(11) = 2.57, p = 0.026), but not after sham tDCS (t(12) = 0.69, p = 0.50). Partial least square analysis identified positive correlations between electric field (EF) strength normal to the ipsilesional M1 surface and individual FC changes in tDCS group (r = 0.84, p < 0.001) but not in sham group (r = 0.21, p = 0.5). Our results indicated anodal tDCS facilitates the FC within the ipsilesional sensorimotor network in chronic stroke subjects, and individual electric field predicts the functional outcomes.


Subject(s)
Motor Cortex , Stroke Rehabilitation , Stroke , Transcranial Direct Current Stimulation , Humans , Motor Cortex/physiology , Stroke/therapy , Stroke/complications , Transcranial Direct Current Stimulation/methods
4.
Front Rehabil Sci ; 3: 795737, 2022.
Article in English | MEDLINE | ID: mdl-36188889

ABSTRACT

Background: Non-invasive brain stimulation methods have been widely utilized in research settings to manipulate and understand the functioning of the human brain. In the last two decades, transcranial electrical stimulation (tES) has opened new doors for treating impairments caused by various neurological disorders. However, tES studies have shown inconsistent results in post-stroke cognitive rehabilitation, and there is no consensus on the effectiveness of tES devices in improving cognitive skills after the onset of stroke. Objectives: We aim to systematically investigate the efficacy of tES in improving post-stroke global cognition, attention, working memory, executive functions, visual neglect, and verbal fluency. Furthermore, we aim to provide a pathway to an effective use of stimulation paradigms in future studies. Methods: Preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines were followed. Randomized controlled trials (RCTs) were systematically searched in four different databases, including Medline, Embase, Pubmed, and PsychInfo. Studies utilizing any tES methods published in English were considered for inclusion. Standardized mean difference (SMD) for each cognitive domain was used as the primary outcome measure. Results: The meta-analysis includes 19 studies assessing at least one of the six cognitive domains. Five RCTs studying global cognition, three assessing visual neglect, five evaluating working memory, three assessing attention, and nine studies focusing on aphasia were included for meta-analysis. As informed by the quantitative analysis of the included studies, the results favor the efficacy of tES in acute improvement in aphasic deficits (SMD = 0.34, CI = 0.02-0.67, p = 0.04) and attention deficits (SMD = 0.59, CI = -0.05-1.22, p = 0.07), however, no improvement was observed in any other cognitive domains. Conclusion: The results favor the efficacy of tES in an improvement in aphasia and attentive deficits in stroke patients in acute, subacute, and chronic stages. However, the outcome of tES cannot be generalized across cognitive domains. The difference in the stimulation montages and parameters, diverse cognitive batteries, and variable number of training sessions may have contributed to the inconsistency in the outcome. We suggest that in future studies, experimental designs should be further refined, and standardized stimulation protocols should be utilized to better understand the therapeutic effect of stimulation.

5.
Front Hum Neurosci ; 14: 584136, 2020.
Article in English | MEDLINE | ID: mdl-33390917

ABSTRACT

Transcranial direct current stimulation (tDCS) has been widely utilized in research settings and modulates brain activity. The application of anodal tDCS on the prefrontal cortex has indicated improvement in cognitive functioning. The cingulate cortex, situated in the medial aspect of the prefrontal cortex, has been identified as a core region performing cognitive functions. Most of the previous studies investigating the impact of stimulation on the prefrontal cortex stimulated the dorsolateral prefrontal cortex (DLPFC), however, the impact of stimulation on cingulate has not been explored. The current study investigates the effect of stimulation on the resting-state functional connectivity of the anterior cingulate cortex with other regions of the brain and changes in behavioral results in a color-word Stroop task, which has repeatedly elicited activation in different regions of the cingulate. Twenty subjects were randomly assigned to the experimental and sham group, and their medial prefrontal area was stimulated using MRI compatible tDCS. Resting-state functional magnetic resonance imaging (rs-fMRI) and cognitive Stroop task were monitored before, during, and after the stimulation. Neuroimaging results indicated a significant decrease in resting-state functional connectivity in the experimental group during and after stimulation as compared to before stimulation in two clusters including right insular cortex, right central operculum cortex, right frontal operculum cortex and right planum polare with the left anterior cingulate cortex (L-ACC) selected as the seed. The behavioral results indicated a significant decrease in reaction time (RT) following stimulation in the experimental group compared to the sham group. Moreover, the change in functional connectivity in subcortical regions with L-ACC as the seed and change in RT was positively correlated. The results demonstrated that ACC has a close functional relationship with the subcortical regions, and stimulation of ACC can modulate these connections, which subsequently improves behavioral performance, thus, providing another potential target of stimulation for cognitive enhancement. Clinical Trial Registration: ClinicalTrials.gov Identifier: NCT04318522.

SELECTION OF CITATIONS
SEARCH DETAIL
...