Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931025

ABSTRACT

This study aimed to analyze the effects of salt stress on the growth physiology and plant-cell ultrastructure of Isatis indigotica Fort. (I. indigotica) to evaluate its adaptability under salt stress. The effects of different concentrations of salt (NaCl; 0, 25, and 300 mmol·L-1) on the agronomic traits, activities of related enzymes, ion balance, and mesophyll-cell ultrastructure of I. indigotica were studied in a controlled pot experiment. Results showed that compared with those of the control group, the aerial-part fresh weight, underground fresh weight, tiller number, root length, root diameter, plant height, and leaf area of salt-stressed I. indigotica increased at 25 mmol·L-1 and then decreased at 300 mmol·L-1. The changes in levels of superoxide dismutase, peroxidase, ascorbate peroxidase, and catalase showed a similar trend, with significant differences compared with control group. Salt stress altered the ion balance of I. indigotica, resulting in a significant increase in Na+ content and a significant decrease in K+ content. The contents of Ca2+ and Mg2+ changed to varying degrees. The analysis of the microstructure of the root showed that under salt treatment, the epidermal cells of the root significantly thickened and the diameter of the xylem decreased. The results of ultrastructural analysis of mesophylls showed that salt stress can cause cell-membrane contraction, cell-gap enlargement, disorder in the structures of chloroplasts and mitochondria, and an increase in the number of osmiophilic particles. These changes were aggravated by the increase in NaCl concentration. This study reveals the response of I. indigotica to salt stress and provides a basis for further study on the salt-tolerance mechanism of I. indigotica.

2.
Molecules ; 29(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38731627

ABSTRACT

A concise synthesis of the sex pheromones of elm spanworm as well as painted apple moth has been achieved. The key steps were the alkylation of acetylide ion, Sharpless asymmetric epoxidation and Brown's P2-Ni reduction. This approach provided the sex pheromone of the elm spanworm (1) in 31% total yield and those of the painted apple moth (2, 3) in 26% and 32% total yields. The ee values of three final products were up to 99%. The synthesized pheromones hold promising potential for use in the management and control of these pests.


Subject(s)
Epoxy Compounds , Moths , Sex Attractants , Animals , Sex Attractants/chemical synthesis , Sex Attractants/chemistry , Epoxy Compounds/chemistry , Molecular Structure
3.
Physiol Plant ; 169(1): 73-82, 2020 May.
Article in English | MEDLINE | ID: mdl-31747055

ABSTRACT

High temperature reduces crop production; however, little is known about the effects of high night temperature (HNT) on the development of male and female reproductive organs, pollination, kernel formation and grain yield in maize (Zea mays L.). Therefore, a temperature-controlled experiment was carried out using heat-sensitive maize hybrid and including three temperature treatments of 32/22°C (day/night; control), 32/26°C and 32/30°C during 14 consecutive days encompassing the flowering stage. When exposed to 30°C night temperature, grain yield and kernel number reduced by 23.8 and 25.1%, respectively, compared with the control. The decrease in grain yield was mainly because of the lower kernel number rather than change in kernel weight under HNT exposure around flowering. No significant differences in grain yield and kernel number were found between 22 and 26°C night temperatures. HNT had no significant effects on the onset of flowering time and anthesis-silking interval but significantly reduced time period of pollen shedding duration and pollen viability, and increased leaf night respiration. Different from high daytime temperature, HNT had no lasting effects on daytime leaf photosynthesis, biomass production and assimilate transportation. From the perspective of source-flow-sink relationship, the unchanged source and flow capacities during daytime are supposed to alleviate the adverse effects on sink strength caused by HNT compared with daytime heat stress. These new findings commendably filled the knowledge gaps concerning heat stress in maize.


Subject(s)
Hot Temperature , Seeds/physiology , Zea mays/physiology , Biomass , Darkness
4.
Front Plant Sci ; 8: 1234, 2017.
Article in English | MEDLINE | ID: mdl-28747925

ABSTRACT

Relatively low nitrogen (N) efficiency and heavy environmental costs caused by excessive N fertilizer applications with outdated fertilization techniques are current cultivation production problems with maize among smallholders in North China Plain. Although many studies have examined agronomical strategies for improving yields and N use, the integrated effects of these measures and the associated environmental costs are not well understood. We conducted a 2-year field study with two densities (67,500 plants ha-1, which was similar to local farmers' practices, and 90,000 plants ha-1) and three N rates (0, 180, and 360 kg ha-1, the rate local farmers' commonly apply) to test the integrated effects for maize production at Wuqiao experimental station in North China Plain. The higher planting density produced significant increases in grain yield (GY), N use efficiency (NUE), agronomic N efficiency (AEN), and N partial productivity (PFPN) by 6.6, 3.9, 24.7, and 8.8%, respectively; in addition, N2O emission and greenhouse gas intensity decreased by 7.3 and 4.3%, respectively. With a lower N application rate, from 360 to 180 kg ha-1, GY was unchanged, and NUE, AEN, and PFPN all significantly increased by 6.2, 96.0, and 98.7%, respectively; in addition, N2O emission and greenhouse gas intensity decreased by 61.5 and 46.2%, respectively. The optimized N rate (180 kg N ha-1) for the 90,000 plants ha-1 treatment achieved the highest yield with only 50% of the N fertilizer input commonly employed by local farmers' (360 kg N ha-1), which contributed to the increased N-uptake and N-transfer capacity. Therefore, our study demonstrated that agronomical methods such as increasing planting density with reasonable N application could be useful to obtain higher GY along with efficient N management to help lower environmental costs of maize production.

SELECTION OF CITATIONS
SEARCH DETAIL
...