Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018430

ABSTRACT

The efficient conversion of plastic wastes to high-value carbon materials like carbon nanotubes (CNTs) is one important issue about the rational recycling, reduction, and reuse of solid wastes. Herein, Fe-, Co-, and Ni-Zr catalysts were prepared and used for CNTs synthesis from polyethylene (PE) waste via a two-stage reaction system. At the same time, the effects of the PE/catalyst ratio and reaction temperature on CNTs synthesis have been studied. Compared with Co-Zr and Ni-Zr, Fe-Zr exhibited the best activity in CNTs synthesis from PE, and it achieved the highest CNTs yield of 806.3 mg/g (per gram of Fe-Zr) at 800 °C with a PE/catalyst ratio of 4. Furthermore, the obtained Fe-Zr/CNTs composite exhibited a low overpotential of 267 mV for the electrocatalytic oxygen evolution reaction (OER) at 20 mA/cm2 in 1 M KOH electrolyte solution, which was 21 mV lower than commercial RuO2 (288 mV) and 50 mV lower than Fe-Zr (317 mV). It was deduced that the in situ growth of CNTs reduced the charge transfer resistance and improved the electron transport efficiency of the Fe-Zr/CNTs composite, leading to superior activity in the electrocatalytic OER. This work provided detailed information for the preparation of the metal/CNTs composite from plastic wastes, which contributed positively to alleviate the environment and energy crisis.

2.
Phys Chem Chem Phys ; 26(28): 19187-19194, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38956985

ABSTRACT

Upgrading plastic wastes into high-value products via the thermochemical process is one of the most attractive topics. Although carbon nanotubes (CNTs) have been successfully synthesized from plastic pyrolysis gas over Fe-, Co-, or Ni-based catalysts, a deep discussion about the reaction mechanism was seldom mentioned in the literature. Herein, this work was intended to study the growth mechanism of CNTs from hydrocarbons on Fe-Al2O3 catalysts. C5-C7 hydrocarbons were used to synthesize CNTs in a high-temperature fixed-bed reactor, and the carbon products and cracked gas were analyzed in detail. The CNT yield was in the order of cyclohexane, cyclohexene > n-hexane > n-heptane > n-pentane, 1-hexene. It was proposed that CNT growth on Fe-Al2O3 catalysts was mainly determined by the yield and structure of six-membered cyclic species, which was tailored by the carbon chain length, C-C/CC bonds, and linear/cyclic structures of C5-C7 hydrocarbons. Compared with n-hexane, the six-membered rings of cyclohexane and cyclohexene promoted six-membered cyclic species formation, increasing CNT and benzene yields; the seven-membered carbon chain of n-heptane promoted methyl-six-membered cyclic species formation, decreasing CNT and benzene yields while increasing the toluene yield; the five-membered carbon chain of n-pentane and the CC bond of 1-hexene inhibited six-membered cyclic species formation, decreasing CNT and benzene yields. This work revealed the structure-activity relationship between C5-C7 hydrocarbons and CNT growth, which may direct the process design and optimization of CNT synthesis from plastic pyrolysis gas.

SELECTION OF CITATIONS
SEARCH DETAIL
...