Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Genomics ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997611

ABSTRACT

BACKGROUND: Cold shock proteins (CSPs) are ubiquitous nucleic acid-binding proteins involved in growth, development, and stress response across various organisms. While extensively studied in many species, their regulatory roles in sweet cherry (Prunus avium L.) remain unclear. OBJECTIVE: To identify and analyze CSP genes (PavCSPs) in sweet cherry genome, and explore the differential responses of PavCSP1 and PavCSP3 to low temperature and salt stress. METHODS: Three methods were employed to identify and characterize CSP in sweet cherry genomes. To explore the potential functions and evolutionary relationships of sweet cherry CSP proteins, sequence alignment and phylogenetic tree incorporating genes from five species were conducted and constructed, respectively. To investigate the responses to abiotic stresses, cis-acting elements analysis and gene expression patterns to low-temperature and salt stress were examined. Moreover, transgenic yeasts overexpressing PavCSP1 or PavCSP3 were generated and their growth under stress conditions were observed. RESULTS: In this study, three CSP genes (PavCSPs) were identified and comprehensively analyzed. The quantitative real-time PCR revealed diverse expression patterns, with PavCSP1-3 demonstrating a particular activity in the upper stem and all members were responsive to low-temperature and salt stress. Further investigation demonstrated that transgenic yeasts overexpressing PavCSP1 or PavCSP3 exhibited improved growth states following high-salt and low-temperature stress. CONCLUSION: These findings elucidated the responses of PavCSP1 and PavCSP3 to salt and low-temperature stresses, laying the groundwork for further functional studies of PavCSPs in response to abiotic stresses.

2.
J Food Sci ; 88(9): 3725-3736, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37548624

ABSTRACT

Low-temperature storage is a widely used method for peach fruit storage. However, the impact of PpCBFs on pectin degradation during low-temperature storage is unclear. As such, in this study, we stored the melting-flesh peach cultivar "Fuli" at low temperature (LT, 6°C) and room temperature (RT, 25°C) to determine the effect of different temperatures on its physiological and biochemical changes. Low-temperature storage can inhibit the softening of "Fuli" peaches by maintaining the stability of the cell wall. It was found that the contents of water-soluble pectin and ionic-soluble pectin in peach fruit stored at RT were higher than those stored at LT. The enzyme activities of polygalacturonase (PG), pectate lyase (PL), and pectin methylesterase (PME) were all inhibited by LT. The expressions of PpPME3, PpPL2, and PpPG were closely related to fruit firmness, but PpCBF2 and PpCBF3 showed higher expression levels at LT than RT. The promoters of PpPL2 and PpPG contain the DER motif, which suggested that PpCBF2 and PpCBF3 might negatively regulate their expression by directly binding to their promoters. These results indicated that LT may maintain firmness by activating PpCBFs to repress pectin-degradation-related enzyme genes during storage.


Subject(s)
Prunus persica , Prunus persica/metabolism , Temperature , Fruit/metabolism , Pectins/metabolism , Polygalacturonase/genetics , Polygalacturonase/metabolism , Cell Wall/metabolism
3.
Front Plant Sci ; 13: 938908, 2022.
Article in English | MEDLINE | ID: mdl-35845695

ABSTRACT

Prunus tomentosa Thunb. has excellent nutritional, economic, and ornamental values with different fruit color. The red coloration of fruit is determined by anthocyanin pigmentation, which is an attractive trait for consumers. However, the mechanisms underlying fruit color formation in the P. tomentosa cherry are not well understood. In this research, the pigmentation patterns in red-color P. tomentosa (RP) fruit and white-color P. tomentosa (WP) were evaluated. Anthocyanin content in matured RP fruit was significantly abundant compared with WP fruit. Metabolomic profiling revealed that pelargonidin 3-O-glucoside, cyanidin 3-O-rutinoside, and pelargonidin 3-O-rutinoside were the predominant anthocyanin compounds in the RP fruit, while, WP fruit had less anthocyanin compositions and lower level. Then, integrative analyses of transcriptome and metabolome identified 285 significant differentially expressed genes (DEGs) closely related to anthocyanin differentially expressed metabolites (DEMs). Among them, nine genes were involved in anthocyanin biosynthesis, transport and degradation pathway, including four biosynthesis genes (PtPAL1, PtDFR, PtANS, and PtUFGT), two transport genes (PtGST11, PtABC10), and three degradation genes (PtPOD1, PtPOD16, PtPOD73). Transcriptome data and real-time PCR showed that the transcript levels of biosynthesis and transport genes were significantly higher in RP than in WP, especially PtANS, PtUFGT, and PtGST11, suggesting they may play key roles in red-colored fruit formation. Meanwhile, the degradation-related genes PtPOD1/16/73 took on exactly opposite trend, suggesting their potential effects on anthocyanin degradation. These results provide novel insights into color patterns formation mechanisms of cherries fruit, and the candidate key genes identified in anthocyanin biosynthesis, transport and degradation may provide a valuable resource for cherry breeding research in future.

4.
Front Nutr ; 8: 796294, 2021.
Article in English | MEDLINE | ID: mdl-34957190

ABSTRACT

This study aims to analyze the physicochemical characteristics and activities of 21 sour cherry cultivars in China. The evaluated accessions differ in several quality traits including weight, moisture, color, total soluble solids, and total acids. Glucose and malic acid were the predominant individual sugar and organic acid in all accessions. The potassium (K) and iron (Fe) were of the highest contents in Érid jubileum (453.887 mg/100 g FW) and Meili (2.988 mg/100 g FW), respectively. The contents of total phenolics (TP) were from 9.309 to 24.118 mg GAE/g DW, and total flavonoids (TF) were 8.935-27.198 mg RE/g DW, which were highly positively correlated (r = 0.892, p < 0.001). M-15, Érdi fubileum, and Érid jubileum showed the highest inhibitory effects on xanthine oxidase, and the IC50 inhibitory were 2.619, 3.117, and 3.940 mg/ml, respectively. This work evaluated the quality and nutritional characteristics of 21 sour cherry cultivars grown in China and explored their potential as an innovative food ingredient for hyperuricemia by evaluating the inhibitory effects of xanthine oxidase. And these results provide valuable data and new ideas for the future sour cherry breeding program as well as a processing guide.

5.
PLoS One ; 16(11): e0260004, 2021.
Article in English | MEDLINE | ID: mdl-34780562

ABSTRACT

Sweet cherry (Prunus avium L.), one of the most appreciated and most important commercial temperate fruits, has high sensory quality and nutritional value. Investigating its metabolic variations provides valuable information on the formation of fruit quality. In this study, widely targeted LC-MS/MS based metabolomics was used to identify and quantify metabolic changes during 'Black Pearl' sweet cherry development and ripening. A total of 263 significant differentially expressed metabolites (DEMs) were detected during the four fruit-development stages. Significant differences were observed in the composition and content of compounds in the four stages of cherry development, especially sugars, organic acids, and flavonoids. Moreover, transcriptome analysis provided a molecular basis for metabolic variations during fruit development. A total of 6724 significant differentially expressed genes (DEGs) were identified. Further correlation analysis of major DEMs and DEGs showed that 19 key DEGs were involved in sugar metabolism, 23 key DEGs in organic acid metabolism, and 13 key DEGs in flavonoid metabolism. The upregulated genes involved in the flavonoid pathway probably play an important role in regulating the rapid increase of anthocyanin content during fruit development. These comprehensive analysis data provide a better understanding to improve fruit quality traits based on molecular and metabolic levels.


Subject(s)
Gene Expression Profiling/methods , Metabolomics/methods , Prunus avium/physiology , Quantitative Trait Loci , Chromatography, Liquid , Flavonoids/metabolism , Fruit/physiology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Metabolic Networks and Pathways , Plant Proteins/genetics , Sequence Analysis, RNA , Sugars/metabolism , Tandem Mass Spectrometry
6.
BMC Plant Biol ; 20(1): 129, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32220242

ABSTRACT

BACKGROUND: Pear is one of the most important fruit crops worldwide. Anthocyanins and procyanidins (PAs) are important secondary metabolites that affect the appearance and nutritive quality of pear. However, few studies have focused on the molecular mechanism underlying anthocyanin and PA accumulation in pear. RESULTS: We conducted metabolome and transcriptome analyses to identify candidate genes involved in anthocyanin and PA accumulation in young fruits of the pear cultivar 'Clapp Favorite' (CF) and its red mutation cultivar 'Red Clapp Favorite' (RCF). Gene-metabolite correlation analyses revealed a 'core set' of 20 genes that were strongly correlated with 10 anthocyanin and seven PA metabolites. Of these, PcGSTF12 was confirmed to be involved in anthocyanin and PA accumulation by complementation of the tt19-7 Arabidopsis mutant. Interestingly, PcGSTF12 was found to be responsible for the accumulation of procyanidin A3, but not petunidin 3, 5-diglucoside, opposite to the function of AtGSTs in Arabidopsis. Transformation with PcGSTF12 greatly promoted or repressed genes involved in anthocyanin and PA biosynthesis, regulation, and transport. Electrophoretic mobility shift and luciferase reporter assays confirmed positive regulation of PcGSTF12 by PcMYB114. CONCLUSION: These findings identify a core set of genes for anthocyanin and PA accumulation in pear. Of these, PcGSTF12, was confirmed to be involved in anthocyanin and PA accumulation. Our results also identified an important anthocyanin and PA regulation node comprising two core genes, PcGSTF12 and PcMYB114. These results provide novel insights into anthocyanin and PA accumulation in pear and represent a valuable data set to guide future functional studies and pear breeding.


Subject(s)
Anthocyanins/metabolism , Biflavonoids/metabolism , Catechin/metabolism , Metabolome , Proanthocyanidins/metabolism , Pyrus/genetics , Transcriptome , Fruit/metabolism , Pyrus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...