Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 278: 116360, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38678690

ABSTRACT

Methylmercury (MeHg) is a neurotoxin associated with foetal neurodevelopmental and adult cognitive deficits. Neurons are highly dependent on the tricarboxylic acid cycle and oxidative phosphorylation to produce ATP and meet their high energy demands. Therefore, mitochondrial quality control (MQC) is critical for neuronal homeostasis. While existing studies have generated a wealth of data on the toxicity of MeHg, the complex cascades and molecular pathways governing the mitochondrial network remain to be elucidated. Here, 0.6, 1.2 and 2.4 mg/kg body weight of MeHg were administered intragastrically to pregnant Sprague Dawley rats to model maternal MeHg exposure. The results of the in vivo study revealed that MeHg-treated rats tended to perform more directionless repetitive strategies in the Morris Water Maze and fewer target-orientation strategies than control offspring. Moreover, pathological injury and synaptic toxicity were observed in the hippocampus. Transmission electron microscopy (TEM) demonstrated that the autophagosomes encapsulated damaged mitochondria, while showing a typical mitochondrial fission phenotype, which was supported by the activation of PINK1-dependent key regulators of mitophagy. Moreover, there was upregulation of DRP1 and FIS1. Additionally, MeHg compensation promoted mitochondrial biogenesis, as evidenced by the activation of the mitochondrial PGC1-α-NRF1-TFAM signalling pathway. Notably, SIRT3/AMPK was activated by MeHg, and the expression and activity of p-AMPK, p-LKB1 and SIRT3 were consistently coordinated. Collectively, these findings provide new insights into the potential molecular mechanisms regulating MeHg-induced cognitive deficits through SIRT3/AMPK MQC network coordination.


Subject(s)
Cognitive Dysfunction , Methylmercury Compounds , Mitochondria , Rats, Sprague-Dawley , Methylmercury Compounds/toxicity , Animals , Mitochondria/drug effects , Rats , Female , Cognitive Dysfunction/chemically induced , Pregnancy , Hippocampus/drug effects , Hippocampus/pathology , Maternal Exposure , Prenatal Exposure Delayed Effects/chemically induced
2.
Sci Total Environ ; 923: 171398, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442753

ABSTRACT

Methylmercury (MeHg), as a global environmental pollutant, is of concern globally due to its neurodevelopmental toxicity. Mitochondria-associated membranes (MAMs) are highly dynamic sites of endoplasmic reticulum (ER)-haemocyte contact. MAMs are closely associated with the pathophysiology of neurological disorders due to their role in the transfer of calcium ions (Ca2+) between mitochondria and the ER. However, the molecular mechanisms that control these interactions in MeHg-induced neurotoxicity have not yet been characterized. In the current study, MeHg caused increases in the levels of both cytosolic and mitochondrial Ca2+ in PC12 cells and promoted MAMs formation in both in vivo and in vitro experiments. Of note, MeHg perturbed mitochondrial dynamics, promoting a shift toward a fission phenotype, and this was supported by the dysregulation of fission regulators. Interestingly, the MeHg-induced promotion of MAMs formation and increase in Ca2+ levels were effectively attenuated by the inhibition of mitochondrial fission using Mdivi-1, a DRP1 inhibitor. Furthermore, MeHg triggered the AMPK pathway, and most of the aforementioned changes were significantly rescued by Compound C. Mechanistic investigations revealed a reciprocal relationship between AMPK- and Ca2+-mediated mitochondrial fission. The specific inhibitor of Ca2+ uniporter, ruthenium-red (RuR), effectively abolished the feedback regulation of mitochondrial dynamics and MAMs formation mediated by AMPK in response to MeHg-induced Ca2+ overload. This study reveals a novel role of AMPK-DRP1-mediated mitochondrial fragmentation in the coupling of ER-mitochondrial calcium microdomains in MeHg-induced neurotoxicity. The findings provide valuable insights for the development of strategies to regulate mitochondrial imbalances in neurological diseases.


Subject(s)
Calcium , Methylmercury Compounds , Rats , Animals , Calcium/metabolism , Mitochondrial Dynamics , Methylmercury Compounds/toxicity , Methylmercury Compounds/metabolism , AMP-Activated Protein Kinases/metabolism , Mitochondria , Endoplasmic Reticulum/metabolism , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...