Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1237955, 2023.
Article in English | MEDLINE | ID: mdl-37731924

ABSTRACT

Introduction: Feeding low protein (LP) diet to animals impose severe challenge to animals' immune homeostasis. However, limited knowledge about the underlying adaption mechanism of host and ruminal microbiota responding to LP diet were well understood. Herein, this study was performed to examine the changes in relative abundance of ruminal microbiota and host ruminal mucosal transcriptome profiles in response to a LP diet. Methods: A total of twenty-four female Xiangdong balck goats with similar weight (20.64 ± 2.40 kg) and age (8 ± 0.3 months) were randomly assigned into two groups, LP (5.52% crude protein containing diet) and CON (10.77% crude protein containing diet) groups. Upon completion of the trial, all goats were slaughtered after a 16-hour fasting period in LiuYang city (N 28°15', E 113°63') in China. HE staining, free amino acids measurement, transcriptome analysis and microbiome analysis were applied to detect the morphology alterations, free amino acids profile alterations and the shift in host ruminal mucosal transcriptome and ruminal microbiota communities. Results: Firstly, the results showed that feeding LP diet to goats decreased the rumen papilla width (P = 0.043), surface area (P = 0.013) and total ruminal free amino acids concentration (P = 0.016). Secondly, microbiome analysis indicated that 9 microbial genera, including Eubacterium and Prevotella, were enriched in LP group while 11 microbial genera, including Butyrivibrio and Ruminococcus, were enriched in CON group. Finally, in terms of immune-related genes, the expression levels of genes involved in tight junction categories (e.g., MYH11, PPP2R2C, and MYL9) and acquired immunity (e.g., PCP4 and CXCL13) were observed to be upregulated in the LP group when compared to the CON group. Conclusion: Under the LP diet, the rumen exhibited increased relative abundance of pathogenic microbiota and VFA-degrading microbiota, leading to disruptions in immune homeostasis within the host's ruminal mucosa. These findings indicate that the ruminal microbiota interacts with host results in the disruption in animals' immune homeostasis under LP diet challenge.

2.
Anim Sci J ; 93(1): e13754, 2022.
Article in English | MEDLINE | ID: mdl-35791780

ABSTRACT

Limited knowledge is clarified about alterations in the related expression of nutrient chemosensors in the distal small intestine and hindgut under a high-grain (HG) diet in small ruminants. Herein, this study was performed to investigate the expression changes related to nutrient sensing and transport in the ileal and colonic epithelium of goats in response to feeding an HG diet. Twelve Liuyang black goats (similar age and weight) were randomly assigned into two groups: an HG diet (concentrate: hay = 90:10) and a CON diet (concentrate: hay = 55:45). Immunohistochemistry was applied to detect morphological changes in the gut epithelium together with altered expression of chemosensors in the ileum and colon. The results showed that feeding an HG diet increased ileal villus height and depth and induced mucosal sloughing in the colon. The expressions of the nutrient transporters GLUT2, GLUT5, SGLT2, CD36, rBAT, EAAT3, and LAT2 and sensing receptors GPR43 and T1R1 were promoted in the ileum under HG conditions. Moreover, feeding an HG diet also enhanced the expression of GLUT2, SGLT2, CD36, and GPR43 in the colon. These findings indicate that adaptation of the gastrointestinal tract to the HG diet promoted the absorption of glucose, fatty acids, and amino acids in goats.


Subject(s)
Animal Feed , Goats , Animal Feed/analysis , Animals , Colon , Diet/veterinary , Edible Grain/metabolism , Goats/physiology , Ileum , Nutrients , Sodium-Glucose Transporter 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...