Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37107000

ABSTRACT

Inappropriate use of antibiotics eventually leads to the emergence of antibiotic-resistant strains and invalidates the treatment of infectious diseases. Aminoglycoside antibiotics (AGAs) are a class of broad-spectrum cationic antibiotics widely used for the treatment of Gram-negative bacterial infections. Understanding the AGA resistance mechanism of bacteria would increase the efficacy of treating these infections. This study demonstrates a significant correlation between AGA resistance and the adaptation of biofilms by Vibrio parahaemolyticus (VP). These adaptations were the result of challenges against the aminoglycosides (amikacin and gentamicin). Confocal laser scanning microscope (CLSM) analysis revealed an enclosure type mechanism where the biological volume (BV) and average thickness (AT) of V. parahaemolyticus biofilm were significantly positively correlated with amikacin resistance (BIC) (p < 0.01). A neutralization type mechanism was mediated by anionic extracellular polymeric substances (EPSs). The biofilm minimum inhibitory concentrations of amikacin and gentamicin were reduced from 32 µg/mL to 16 µg/mL and from 16 µg/mL to 4 µg/mL, respectively, after anionic EPS treatment with DNase I and proteinase K. Here, anionic EPSs bind cationic AGAs to develop antibiotic resistance. Transcriptomic sequencing revealed a regulatory type mechanism, where antibiotic resistance associated genes were significantly upregulated in biofilm producing V. parahaemolyticus when compared with planktonic cells. The three mechanistic strategies of developing resistance demonstrate that selective and judicious use of new antibiotics are needed to win the battle against infectious disease.

2.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430829

ABSTRACT

The localization of lipoprotein (Lol) system is responsible for the transport of lipoproteins in the outer membrane (OM) of Vibrio parahaemolyticus. LolB catalyzes the last step in the Lol system, where lipoproteins are inserted into the OM. If the function of LolB is impeded, growth of V. parahaemolyticus is inhibited, due to lack of an intact OM barrier for protection against the external environment. Additionally, it becomes progressively harder to generate antimicrobial resistance (AMR). In this study, LolB was employed as the receptor for a high-throughput virtual screening from a natural compounds database. Compounds with higher glide score were selected for an inhibition assay against V. parahaemolyticus. It was found that procyanidin, stevioside, troxerutin and rutin had both exciting binding affinity with LolB in the micromolar range and preferable antibacterial activity in a concentration-dependent manner. The inhibition rates of 100 ppm were 87.89%, 86.2%, 91.39% and 83.71%, respectively. The bacteriostatic mechanisms of the four active compounds were explored further via fluorescence spectroscopy and molecular docking, illustrating that each molecule formed a stable complex with LolB via hydrogen bonds and pi-pi stacking interactions. Additionally, the critical sites for interaction with V. parahaemolyticus LolB, Tyr108 and Gln68, were also illustrated. This paper demonstrates the inhibition of LolB, thus, leading to antibacterial activity, and identifies LolB as a promising drug target for the first time. These compounds could be the basis for potential antibacterial agents against V. parahaemolyticus.


Subject(s)
Escherichia coli Proteins , Periplasmic Binding Proteins , Vibrio parahaemolyticus , Escherichia coli Proteins/metabolism , Periplasmic Binding Proteins/metabolism , Bacterial Outer Membrane Proteins/chemistry , Vibrio parahaemolyticus/metabolism , Escherichia coli/metabolism , Molecular Docking Simulation , Molecular Chaperones/metabolism , Lipoproteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
3.
Front Microbiol ; 13: 906490, 2022.
Article in English | MEDLINE | ID: mdl-35774452

ABSTRACT

Antimicrobial-resistant (AMR) foodborne bacteria causing bacterial infections pose a serious threat to human health. In addition, the ability of some of these bacteria to form biofilms increases the threat level as treatment options may become compromised. The extent of antibiotic resistance and biofilm formation among foodborne pathogens remain uncertain globally due to the lack of systematic reviews. We performed a meta-analysis on the global prevalence of foodborne pathogens exhibiting antibiotic resistance and biofilm formation using the methodology of a Cochrane review by accessing data from the China National Knowledge Infrastructure (CNKI), PubMed, and Web of Science databases between 2010 and 2020. A random effects model of dichotomous variables consisting of antibiotic class, sample source, and foodborne pathogens was completed using data from 332 studies in 36 countries. The results indicated AMR foodborne pathogens has become a worrisome global issue. The prevalence of AMR foodborne pathogens in food samples was greater than 10% and these foodborne pathogens were most resistant to ß-lactamase antibiotics with Bacillus cereus being most resistant (94%). The prevalence of AMR foodborne pathogens in human clinical specimens was greater than 19%, and the resistance of these pathogens to the antibiotic class used in this research was high. Independently, the overall biofilm formation rate of foodborne pathogenic bacteria was 90% (95% CI, 68%-96%) and a direct linear relationship between biofilm formation ability and antibiotic resistance was not established. Future investigations should document both AMR and biofilm formation of the foodborne pathogen isolated in samples. The additional information could lead to alternative strategies to reduce the burden cause by AMR foodborne pathogens.

4.
Article in English | MEDLINE | ID: mdl-36612642

ABSTRACT

In China, a traditional perspective recommended that consuming seafood should be mixed or matched with vinegar, because people thought this traditional Chinese eating habit could reduce the risk of pathogenic microorganism infection, such as Vibrio parahaemolyticus induced diarrhea. However, this empirical viewpoint has not yet been evaluated scientifically. This study conducted a simplified quantitative microbiological risk assessment (QMRA) model, which was employed to estimate the risk reduction of V. parahaemolyticus on ready-to-eat (RTE) shrimp by consuming with vinegars (white vinegar, aromatic vinegar, or mature vinegar). Results showed the reduction of V. parahaemolyticus density on RTE shrimp after consuming with white vinegar, aromatic vinegar and mature vinegar was respectively 0.9953 log CFU/g (90% confidence interval 0.23 to 1.76), 0.7018 log CFU/g (90% confidence interval 0.3430 to 1.060) and 0.6538 log CFU/g (90% confidence interval 0.346 to 0.9620). The infection risk of V. parahaemolyticus per meal in this QMRA model was quantified by a mean of 0.1250 with the standard deviation of 0.2437. After consuming with white vinegar, aromatic vinegar, and mature vinegar, the mean infection risk of V. parahaemolyticus on shrimp decreased to 0.0478, 0.0652, and 0.0686. The QMRA scenarios indicated significant reductions in infection risk when eating RTE shrimp by the Chinese eating habit (consuming with vinegar). This good eating habit should be recommended to promote the spread of around the world.


Subject(s)
Vibrio parahaemolyticus , Humans , Acetic Acid , Feeding Behavior , Risk Reduction Behavior , Seafood/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...