Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 98(7): 2927-2932, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30753620

ABSTRACT

This experiment was conducted to evaluate the effects of lysine deficiency or excess on growth and the expression of lipid metabolism genes in slow-growing birds. A total of 360 one-day-old chicks were randomly divided into 3 groups, with 6 replicates of 20 birds each. The birds fed the basal diet with a total lysine 0.60% (LL), 1.00% (ML), or 1.40% (HL). The amount of lysine (ML) as the control group, LL and HL as the experimental group, the trial period last 3 wk. The results showed that compared with ML, LL significantly decreased average daily gain and average daily feed intake and remarkably increased feed conversion ratio of birds at 21 day old (P < 0.01), while the above indices in HL had no significant effects (P > 0.05). Besides, LL reduced the pectoral muscle rate (P < 0.01) and decreased the percentage of abdominal fat significantly (P < 0.05). In addition, compared with ML, the expression of fatty acid binding protein 1 (FABP1), acetyl-CoA carboxylase (ACC), malic enzyme (ME), and sterol regulatory element binding protein 1 (SREBP1c) mRNA of liver in LL was significantly decreased (P < 0.05), and the expression of cholesteryl ester transfer protein (CETP) mRNA was significantly increased (P < 0.01), whereas LL had no significant effects on the expression of peroxisome proliferator activated receptor alpha (PPARα) mRNA (P > 0.05). Moreover, compared with ML, HL significantly reduced the expression of FABP1, ACC, ME, SREBP-1c, and PPARα mRNA in the liver (P < 0.05), and had no significant effects on the expression of CETP mRNA (P > 0.05). The results of current research suggest that dietary lysine deficiency could reduce the growth and fat deposition of slow-growing broilers mainly by downregulating the expression of lipid synthesis genes.


Subject(s)
Diet/veterinary , Lipid Metabolism/drug effects , Lysine/pharmacology , Animal Feed/analysis , Animals , Chickens/growth & development , Gene Expression , Lipid Metabolism/genetics , Liver/drug effects , Liver/metabolism , Lysine/deficiency , Random Allocation
2.
Poult Sci ; 97(4): 1238-1244, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29452404

ABSTRACT

This study aimed to evaluate the effects of vitamin C and vitamin E on antioxidant capacity and immune function in oxidative-stressed breeder roosters. One hundred twenty 45-week-old Lveyang black-boned breeder roosters were randomly assigned to 5 dietary treatments, including negative control group (NC), positive control group (PC), and 3 trial groups, which were fed the diets containing 300 mg/kg VC, 200 mg/kg VE, or 300 mg/kg VC and 200 mg/kg VE (VC+VE). At 47 wk of age, the positive control and trial groups were subcutaneously injected 3 times every other d with dexamethasone (DEX) 4 mg/kg of body weight, the negative control group was injected with saline. The experiment lasted for 35 d. The results showed that at 50 wk of age, average daily feed intake of birds challenged with DEX significantly increased (P < 0.05). During post-stress recovery period (52 wk of age), dietary supplemental VE or VC+VE notably increased body weight under oxidative stress (P < 0.01). Oxidative stress induced by DEX could significantly decrease superoxide dismutase (SOD), IgM, antibody titer of ND and mRNA expression of SOD or glutathion peroxidase activity (GSH-Px), increase serous malondialdehyde (MDA) (P < 0.05). Supplementation of VC or VE significantly decreased serous MDA, and increased SOD under oxidative stress (P < 0.05). Supplementation of VC or VE, or their combination significantly increased the relative expression of GSH-Px mRNA when compared to the oxidative-stressed control treatment (P < 0.05), whereas did not alleviate the relative expression of SOD mRNA (P > 0.05). Therefore, the results suggest that addition of 300 mg/kg VC, 200 mg/kg VE or their combination could improve antioxidant ability and immune performance in oxidative-stressed breeder roosters through up-regulating the expression of GSH-Px gene.


Subject(s)
Antioxidants/metabolism , Ascorbic Acid/metabolism , Chickens/physiology , Immunity, Innate , Oxidative Stress , Vitamin E/metabolism , Animal Feed , Animals , Ascorbic Acid/administration & dosage , Avian Proteins/genetics , Avian Proteins/metabolism , Chickens/genetics , Chickens/immunology , Diet/veterinary , Dietary Supplements/analysis , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Immunity, Innate/drug effects , Male , Random Allocation , Up-Regulation , Vitamin E/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...