Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 241: 113726, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35691195

ABSTRACT

The pathogenesis of brain inflammation induced by polychlorinated biphenyl 126 (PCB126) has not yet been fully illustrated. Growing evidence highlights the relevance of the microbiota-gut-brain axis in central nervous system (CNS) dysfunction. Therefore, we aimed to study the role of the gut microbiota in PCB126-induced proinflammatory cytokine increases in the mouse brain. The results showed that PCB126 exposure significantly disordered gut bacterial communities, resulting in the enrichment of gram-negative bacteria (e.g., Bacteroidetes and Proteobacteria), further leading to elevated levels of the gram-negative bacterial lipopolysaccharide (LPS). Subsequently, colonic toll-like receptor 4 (TLR-4) was activated by bacterial LPS, which promoted proinflammatory cytokine generation and inhibited tight junction (TJ) protein expression. Then, bacterial LPS translocated from the gut lumen into the blood circulation and reached the brain, triggering LPS/TLR-4-mediated increases in brain proinflammatory cytokines. Further analysis after fecal microbiota transplantation (FMT) suggested that the gut microbiota disturbance caused by PCB126 could induce elevated bacterial LPS and trigger TLR-4-mediated increases in proinflammatory cytokines in the brain. This study highlights the possibility that PCB126-induced gut microbiota disorder contributes to increased brain proinflammatory cytokines. These results provide a new perspective for identifying the toxicity mechanisms of PCB126 and open up the possibility of modulating the gut microbiota as a therapeutic target for CNS disease caused by environmental pollution.


Subject(s)
Gastrointestinal Microbiome , Polychlorinated Biphenyls , Animals , Bacteria/metabolism , Brain/metabolism , Brain-Gut Axis , Cytokines/metabolism , Dysbiosis/chemically induced , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/physiology , Lipopolysaccharides , Mice , Polychlorinated Biphenyls/toxicity , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
2.
Environ Toxicol ; 35(4): 495-506, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31797534

ABSTRACT

Microplastics (MPs) pollution is a global paradigm that raises concern in relation to environment and human health. In order to investigate the molecular toxicity mechanisms of MPs, transcriptomic analyses were performed on in vitro Caco-2 cell model. After observing that polystyrene microplastics (PS-MPs) decreased cell viability in a dose-dependent manner, the responsible genes and involved pathways that might make contribution to PS-MBs-induced toxicity to Caco-2 cells were identified with Illumina RNA seq. A total of 442 genes including, 210 up-regulated ones and 232 down-regulated ones, showed differential expression after treatment by PS-MPs with a concentration of 12.5 mg L-1 or 50.0 mg L-1 for 24 hours. Gene Ontology (GO) annotation enriched unigenes can be grouped into three separated clusters: cellular component (CC), biological process (BP), and molecular function (MF). The dominate pathways related to NF-κB, MAPK signaling, cytokine-cytokine receptor interaction, and toll-like receptor were strongly influenced by PS-MBs. These pathways are involved in modulating cell inflammatory and proliferation. The qPCR were applied to investigate the transcriptional level of five proliferation related genes (Ras, ERK, MER, CDK4, Cyclin D1) and four inflammation related genes (TRPV1, iNOS, IL-1ß, IL-8), and the results were consistent with RNA-seq data. This study has provided new insight into the understanding of the toxicity effects of PS-MBs-induced intestinal inflammatory diseases.


Subject(s)
Environmental Pollutants/toxicity , Microplastics/toxicity , Polystyrenes/toxicity , Transcriptome/drug effects , Caco-2 Cells , Cell Survival/drug effects , Dose-Response Relationship, Drug , Down-Regulation , Gene Expression Profiling , Gene Ontology , Humans , Inflammation , Interleukin-1beta/genetics , Microspheres , NF-kappa B/genetics , Nitric Oxide Synthase Type II/genetics , Up-Regulation
3.
Appl Microbiol Biotechnol ; 103(23-24): 9723-9737, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31728586

ABSTRACT

Gut microbiome critically contributes to host health status. Thus, investigating the relationship between the gut microbiome and toxic chemicals is a hot topic in toxicology research. Exposure to malachite green (MG) has been linked to various health disorders. Thus, exploring the gut microbiota changes in response to MG would provide a new perspective on the toxicity effects of this chemical substance. MG exposure resulted in the significantly lower alpha diversity (Mann-Whitney U test, z = - 6.83, p = 0.00) but higher beta diversity (Mann-Whitney U test, z = - 1.98, p = 0.04) of gut microbiota, and significantly decreased ecosystem stability (alpha and beta variability; Mann-Whitney U test, all p < 0.05) of gut microbial communities. Gut bacterial networks showed that the interactions became more complex and stronger after MG exposure, which could decrease the stability of the network. Changes in gut microbiota composition were mainly reflected in the enrichment of opportunistic bacteria (i.e., Aeromonas and Vibrio) and the depression of fermentative bacteria (i.e., Bacteroides and Paludibacter). MG exposure leads to a significantly increased gut permeability (lipopolysaccharide-binding protein; Mann-Whitney U test, z = - 6.92, p = 0.00), which could reduce the host selective pressures on particular bacterial species (such as members in Aeromonas and Vibrio). This result was further supported by the weakened importance of a deterministic microbial assembly after MG exposure. All these findings indicated that MG exposed fishes might have more possibilities to be infected, as demonstrated by the enrichment of opportunistic pathogenic bacteria, high-level immune responses, and increased gut permeability. These findings greatly improve our understanding of the toxicity effects of MG.


Subject(s)
Bacteria/drug effects , Gastrointestinal Microbiome/drug effects , Rosaniline Dyes/toxicity , Animals , Fishes/microbiology , RNA, Ribosomal, 16S
4.
Microb Ecol ; 78(1): 6-19, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30343437

ABSTRACT

Fasting influences the overall physiology of fish, and the knowledge how the gut microbiota, growth performances, and immune function in response to intermittent and long-term fasting is still insufficient. Here, we characterized the effects of fasting on the host-gut microbiota in crucian carp, which would enhance our insight into physiological adaptation to fasting. To achieve this, we investigated the gut microbial communities of crucian carp with different fasting stress, and corresponding immune and growth parameters. The gut microbial communities were structured into four clusters according to different fasting stress, namely one control group (feed regularly), two intermittent fasting groups (fasting period and re-feeding period, respectively), and one long-term fasting group. Intermittent fasting significantly improved the activity of superoxide dismutase (SOD) and lysozyme (LZM) (ANOVA, p < 0.05) and significantly increased alpha diversity and ecosystem stability of gut microbiota (ANOVA, p < 0.05). Gut length (GL) and condition factor (CF) showed no significant difference between the control group (CG) and intermittent fasting group under re-feeding period (RIF) (ANOVA, p = 0.11), but relative gut length (RGL) in group RIF was higher than that in the CG (ANOVA, p = 0.00). The bacterial genera Bacteroides, Akkermansia, and Erysipelotrichaceae were enriched in fishes under intermittent fasting. Two Bacteroides OTUs (OTU50 and OTU1292) correlated positively with immune (SOD, complement, and LZM) and growth (GL and RGL) parameters. These results highlight the possible interplay between growth performances, immune function, and gut microbiota in response to fasting.


Subject(s)
Bacteria/isolation & purification , Carps/immunology , Carps/microbiology , Gastrointestinal Microbiome , Intestines/microbiology , Adaptation, Physiological , Animals , Bacteria/classification , Bacteria/genetics , Carps/metabolism , Fasting , Intestines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...