Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Heliyon ; 10(9): e30373, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765108

ABSTRACT

In the vanguard of oncological advancement, this investigation delineates the integration of deep learning paradigms to refine the screening process for Anticancer Peptides (ACPs), epitomizing a new frontier in broad-spectrum oncolytic therapeutics renowned for their targeted antitumor efficacy and specificity. Conventional methodologies for ACP identification are marred by prohibitive time and financial exigencies, representing a formidable impediment to the evolution of precision oncology. In response, our research heralds the development of a groundbreaking screening apparatus that marries Natural Language Processing (NLP) with the Pseudo Amino Acid Composition (PseAAC) technique, thereby inaugurating a comprehensive ACP compendium for the extraction of quintessential primary and secondary structural attributes. This innovative methodological approach is augmented by an optimized BERT model, meticulously calibrated for ACP detection, which conspicuously surpasses existing BERT variants and traditional machine learning algorithms in both accuracy and selectivity. Subjected to rigorous validation via five-fold cross-validation and external assessment, our model exhibited exemplary performance, boasting an average Area Under the Curve (AUC) of 0.9726 and an F1 score of 0.9385, with external validation further affirming its prowess (AUC of 0.9848 and F1 of 0.9371). These findings vividly underscore the method's unparalleled efficacy and prospective utility in the precise identification and prognostication of ACPs, significantly ameliorating the financial and temporal burdens traditionally associated with ACP research and development. Ergo, this pioneering screening paradigm promises to catalyze the discovery and clinical application of ACPs, constituting a seminal stride towards the realization of more efficacious and economically viable precision oncology interventions.

2.
Iran J Basic Med Sci ; 27(6): 671-677, 2024.
Article in English | MEDLINE | ID: mdl-38645498

ABSTRACT

Objectives: Wnt5a, which regulates the activities of osteoblasts and osteoclasts, is reportedly overexpressed in osteoarthritis (OA) tissues. The purpose of this study was to elucidate its role in the development of OA by deleting Wnt5a in osteocalcin (OCN)-expressing cells. Materials and Methods: Knee OA was induced by anterior cruciate ligament transection (ACLT) in OCN-Cre;Wnt5afl/fl knockout (Wnt5a-cKO) mice and control littermates. Eight weeks after surgery, histological changes, cell apoptosis, and matrix metabolism of cartilage were evaluated by toluidine blue, TUNEL staining, and im-immunohistochemistry analyses, respectively. In addition, the subchondral bone microarchitecture of mice was examined by micro-computed tomography (micro-CT). Results: Histological scores show substantial cartilage degeneration occurred in ACLT knees, coupled with decreased collagen type II expression and enhanced matrix metalloproteinase 13 expression, as well as higher proportions of apoptotic cells. Micro-CT results show that ACLT resulted in decreased bone mineral density, bone volume/trabecular volume, trabecular number, and structure model index of subchondral bones in both Wnt5a-cKO and control littermates; although Wnt5a-cKO mice display lower BMD and BV/TV values, no significant difference was observed between Wnt5a-cKO and control mice for any of these values. Conclusion: Our findings indicate that Wnt5a deficiency in OCN-expressing cells could not prevent an osteoarthritic phenotype in a mouse model of post-traumatic OA.

3.
Bone Rep ; 20: 101744, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38404727

ABSTRACT

Objectives: Adjacent segment disc degeneration (ASDD) is one of the long-term sequelae of spinal fusion, which is more susceptible with osteoporosis. As an anti-osteoporosis drug, strontium ranelate (SR) has been reported to not only regulate bone metabolism but also cartilage matrix formation. However, it is not yet clear whether SR has a reversal or delaying effect on fusion-induced ASDD in a model of osteoporosis. Materials and methods: Fifth three-month-old female Sprague-Dawley rats that underwent L4-L5 posterolateral lumbar fusion (PLF) with spinous-process wire fixation 4 weeks after bilateral ovariectomy (OVX) surgery. Animals were administered vehicle (V) or SR (900 mg/kg/d) orally for 12 weeks post-PLF as follows: Sham+V, OVX + V, PLF + V, OVX + PLF + V, and OVX + PLF + SR. Manual palpation and X-ray were used to evaluate the state of lumbar fusion. Adjacent-segment disc was assessed by histological (VG staining and Scoring), histomorphometry (Disc Height, MVD, Calcification rate and Vascular Bud rate), immunohistochemical (Col-II, Aggrecan, MMP-13, ADAMTS-4 and Caspase-3), and mRNA analysis (Col-I, Col-II, Aggrecan, MMP-13 and ADAMTS-4). Adjacent L6 vertebrae microstructures were evaluated by microcomputed tomography. Results: Manual palpation and radiographs showed clear evidence of the fused segment's immobility. After 12 weeks of PLF surgery, a fusion-induced ASDD model was established. Low bone mass caused by ovariectomy can significantly exacerbate ASDD progression. SR exerted a protective effect on adjacent segment intervertebral disc with the underlying mechanism possibly being associated with preserving bone mass to prevent spinal instability, maintaining the functional integrity of endplate vascular microstructure, and regulating matrix metabolism in the nucleus pulposus and annulus fibrosus. Discussion: Anti-osteoporosis medication SR treatments not only maintain bone mass and prevent fractures, but early intervention could also potentially delay degenerative conditions linked to osteoporosis. Taken together, our results suggested that SR might be a promising approach for the intervention of fusion-induced ASDD with osteoporosis.

4.
Sci Total Environ ; 912: 168687, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37996024

ABSTRACT

Landform, soil properties, soil cadmium (Cd) pollution and rainfall are the important factors affecting the spatial variation of rice Cd. In this study, we conducted big data mining and model analysis of 150,000 rice-soil sampling sites to examine the effects by the above four factors on the spatial variation of rice Cd in Hunan Province, China. Specifically, the variable coefficient of rice Cd in space was significantly correlated with the partition scale according to the logistic fitting. The improved random forest results suggested that elevation (DEM) and pH were the two most important factors affecting the spatial variation of rice Cd, followed by relief, soil Cd content and rainfall. Typically, variance partitioning analysis (VPA) revealed that both the soil property and the interactive effects between the soil property and Cd pollution were the principal contributors to the rice-Cd variation, with the respective contributing rates of 30.5 % and 29.0 %. Meanwhile, the partial least square-structural equation modelling (PLS-SEM) elucidated 4 main paths of specific indirect effects on rice-Cd variation. They were landform → physicochemical property → soil acidity → rice-Cd variation, landform → soil acidity → rice-Cd variation, physicochemical property → soil acidity → rice-Cd variation, and soil texture → soil acidity → rice-Cd variation. This work can provide a general guidance for scientific zoning, accurate prediction and prevention of Cd pollution in paddy fields.

5.
Magn Reson Imaging ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38035947

ABSTRACT

PURPOSE: To develop and validate a model based on MRI radiomics modals for predicting surgical high FIGO(IB3 and ≥ IIA2) and low FIGO(IB1, IB2, and IIA1) stages in patients with cervical carcinoma (CC) . METHODS: A total of 296 early-stage patients with CC (preoperative FIGO stages IB-IIA) confirmed by surgery and pathology were included in this retrospective study from two institutions For each patient,we extracted radiomics features from spectral attenuated inversion-recovery T2-weighted (SPAIR-T2W) and contrast-enhanced T1-weighted (CE-T1W) images.Manual segmentation was performed using the 3D Slicer software, while radiomics features were extracted, screened using the R software. A 2-stage feature extraction strategy involving univariate analysis and the Least Absolute Shrinkage Selection Operator technique was performed. A support vector machine-based model was eventually constructed. Predictive accuracy of the training and validation datasets was assessed in terms of area under the ROC curve (AUC). RESULTS: A total of 1130 features were extracted from SPAIR-T2WI and CET1WI images respectively, in which 8 and 7 features significantly were associated with FIGO staging. AUCs of the SPAIR-T2W and CE-T1W models were were 0.803 and 0.790, respectively, in the internal validation group. In the external validation group, the AUCs were 0.767 and 0.749, respectively, which increased to 0.771 in the combined model. CONCLUSION: Our study demonstrated the feasibility of radiomics features from SPAIR-T2W and CE-T1W images for the prediction of surgical FIGO stage in CC. Our proposed model thereby carries the potential as a non-invasive tool for the staging and treatment planning of this disease. ADVANCES IN KNOWLEDGE: A radiomics model provide a non-invasive and objective method for the detection of FIGO staging in patients with cervical cancer before surgery, thus providing a reference for the selection of treatment options for patients.

6.
PeerJ ; 11: e15936, 2023.
Article in English | MEDLINE | ID: mdl-37637178

ABSTRACT

Background: An increasing number of observational studies have suggested an association between dental caries and Alzheimer's disease (AD). The association between dental caries and Alzheimer's disease may be mediated by confounders or reverse causality. In this study, we conducted bidirectional two-sample Mendelian randomization (MR) to estimate the bidirectional causality between dental caries and AD. Materials and Methods: Genome-wide association study (GWAS) summary statistics of dental caries were extracted from a published meta-analysis which included a total of 487,823 participants. GWAS datasets of AD and AD onset age were obtained from the FinnGen bank. A bidirectional two-sample analysis was performed to explore the causality between dental caries and AD. Results: For the dental caries-AD causality estimation, there was no significant association between dental caries and AD, neither with the AD GWASs from the FinnGen database (OR: 1.041, p = 0.874) nor with those from the International Genomics of Alzheimer's Project (OR: 1.162, p = 0.409). In addition, the genetic susceptibility to dental caries was not related to the onset age of AD. No causality existed between dental caries and early-onset AD (OR: 0.515, p = 0.302) or late-onset AD (OR: 1.329, p = 0.347). For the AD-dental caries relationship, no causality was detected by the IVW method (OR: 1.000, p = 0.717). Findings from other MR methods were consistent. The pleiotropy test and sensitivity analysis confirmed the validity of these MR results. Conclusions: In this bidirectional MR study, robust evidence to support a bidirectional causal effect between dental caries and AD from the GWAS results within large-scale European-descent populations was absent. Having dental caries would not alter the onset age of AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/epidemiology , Causality , Genome-Wide Association Study , Mendelian Randomization Analysis
7.
Huan Jing Ke Xue ; 44(7): 3788-3796, 2023 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-37438278

ABSTRACT

To prevent disease spreading during the COVID-19 epidemic, Shenzhen adopted lockdown measures in March of 2022. This provided an opportunity to study the response of changes in anthropogenic volatile organic compounds (AVOCs) in Shenzhen to emission reduction and to evaluate the effectiveness of current emission reduction measures. This study analyzed the variety of AVOCs before, during, and after the epidemic lockdown based on the online observation data of pollutants at Lianhua Station in Shenzhen from March 7, 2022 to March 27, 2022. Additionally, the sensitivity of ozone formation and the assessment of the reduction effect of precursors was conducted by an observation based model(OBM). The results showed that:affected by regional influences and the interference of meteorological conditions, the average value of AVOCs in Shenzhen urban areas did not drop significantly during the lockdown period compared to that before the lockdown. However, the peak of AVOCs at the morning peak time under the influence of "sea and land wind" during the epidemic lockdown period dropped by 46% on average compared with that during the non-lockdown period, and the aromatic hydrocarbon component dropped the most by 59%. Additionally, under the influence of continuous easterly wind, or during the accumulation and increase of AVOCs affected by regional transmission, aromatic components also decreased by an average of 25% and 21%, respectively. During the lockdown period of the epidemic in Shenzhen, the O3 formation in urban areas was still AVOCs-limited. Increasing the emission reduction ratio of AVOCs was the most effective measure to reduce O3 in the short term. In order to ensure the effectiveness of emission reduction, it was recommended that the coordinated emission reduction ratio of AVOCs and NOx should be greater than 1:2. It was only possible to enter the downward channel of O3 if the deep emission reduction was more than 60%. This study revealed that the emission reduction of AVOCs during the morning traffic peak during the epidemic lockdown period was conducive to inhibiting the formation of O3, whereas the control of NOx would promote it. Strengthening the control of local aromatic hydrocarbon components during the regional impact process could also significantly reduce O3 production. At this stage, Shenzhen should strengthen the management and control of industrial solvents, especially to reduce the aromatic hydrocarbon components in the solvent source that have a greater impact on the generation of O3. Further, Shenzhen should continue to promote the reform of the energy structure of motor vehicles to reduce the emission of VOCs in fuel combustion.


Subject(s)
COVID-19 , Environmental Pollutants , Ozone , Volatile Organic Compounds , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Industry
8.
Exp Eye Res ; 230: 109465, 2023 05.
Article in English | MEDLINE | ID: mdl-37030582

ABSTRACT

Vitreomacular traction syndrome results from persistent vitreoretinal adhesions in the setting of partial posterior vitreous detachment (PVD). Vitrectomy and reattachment of retina is an effective therapeutic approach. The adhesion between vitreous cortex and internal limiting membrane (ILM) of the retina is stronger in youth, which brings difficulties to induce PVD in vitrectomy. Several clinical investigations demonstrated that intravitreous injection of plasmin before vitrectomy could reduce the risk of detachment. In our study, a novel recombinant human microplasminogen (rhµPlg) was expressed by Pichia pastoris. Molecular docking showed that the binding of rhµPlg with tissue plasminogen activator (t-PA) was similar to plasminogen, suggesting rh µPlg could be activated by t-PA to generate microplasmin (µPlm). Moreover, rhµPlg had higher catalytic activity than plasminogen in amidolytic assays. Complete PVD was found at vitreous posterior pole of 125 µg rhµPlg-treated eyes without morphological change of retina in juvenile rabbits via intraocular injection. Our results demonstrate that rhµPlg has a potential value in the treatment of vitreoretinopathy.


Subject(s)
Retinal Diseases , Vitreous Detachment , Animals , Humans , Rabbits , Adolescent , Vitreous Detachment/drug therapy , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/pharmacology , Vitreous Body/metabolism , Molecular Docking Simulation , Retina , Vitrectomy/methods , Plasminogen/metabolism , Plasminogen/pharmacology , Injections, Intraocular , Retinal Diseases/metabolism , Serine Proteases
9.
Acta Radiol ; 64(1): 395-403, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34918963

ABSTRACT

BACKGROUND: Preoperative prediction of clinical pathological indicators of cervical cancer (CC) is of great significance to the formulation of personalized treatment plans for CC. PURPOSE: To investigate magnetic resonance imaging (MRI) radiomics analysis for the evaluation of pathological types, tumor grade, FIGO stage, and lymph node metastasis (LNM) of CC. MATERIAL AND METHODS: A total of 235 patients with CC from three institutes were enrolled in the study. All patients underwent T2/SPAIR and contrast-enhanced T1-weighted (CE-T1WI) imaging scans before radical hysterectomy by pelvic lymph node dissection surgery. Radiomics features extracted from T2/SPAIR and CE-T1WI imaging were selected by the least absolute shrinkage and selection operator (LASSO) methods for further radiomics signature calculation. These radiomic features were used to construct regression and decision tree models to evaluate the performance of radiomic features in distinguishing clinicopathological indicators. RESULTS: The area under the curve (AUC) of T2/SPAIR and CE-T1WI imaging were 0.777 and 0.750, respectively, for differentiating between adenocarcinoma and squamous cell carcinoma. From the two sequences, the AUC of the verification group that distinguished low FIGO stage from high FIGO stage was 0.716 and 0.676, respectively. The AUC for moderately well and poorly differentiated tumors were 0.729 on T2/SPAIR and 0.749 on CE-T1WI imaging. The AUC of the verification groups for LNM was 0.730 and 0.618 on T2/SPAIR and CE-T1WI imaging, respectively. CONCLUSION: MRI radiomics features can be used as a non-invasive method to evaluate the clinicopathological indexes of CC and provide an important auxiliary examination method for patients to determine individualized treatment plans before operation.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/pathology , Retrospective Studies , Magnetic Resonance Imaging/methods , Lymphatic Metastasis/diagnostic imaging
10.
Iran J Basic Med Sci ; 25(10): 1228-1233, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36311191

ABSTRACT

Objectives: This study aimed to determine the therapeutic effect of equol (EQ) on osteoporotic osteoarthritis (OP OA). Materials and Methods: Thirty-six 12-week-old female Sprague-Dawley rats were randomly divided into sham group, OP OA group, and EQ group (n=12). OP OA was induced by anterior cruciate ligament transection (ACLT) combined with ovariectomy (OVX). EQ was orally administrated (10 µg/g/day) after the operation for 12 weeks. The efficacy was evaluated by gross pathology and histopathologic evaluation. The underlying mechanism was investigated by immunohistochemical analysis, micro-computed tomography (micro-CT) scanning, and tartrate-resistant acid phosphatase (TRAP) staining. Results: EQ effectively retarded cartilage degeneration, decreased the levels of matrix metalloproteinases-13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), nuclear factor-kappa B P65 (NF-κB P65) and caspase-3, and increased the levels of collagen type II (Col-II), Col-I, aggrecan (AGG), and inhibitor of NF-κB α (IκBα) in the cartilage. In addition, EQ increased bone mineral density, improved the microstructural parameters of the subchondral bone (SB), and decreased the number of osteoclasts. Conclusion: EQ exerted a chondroprotective effect on OP OA in rats, associated with inhibition of the NF-κB signaling pathway and chondrocyte apoptosis. Furthermore, EQ showed an osteoprotective effect on SB via inhibiting osteoclastic activities.

11.
Front Immunol ; 13: 922922, 2022.
Article in English | MEDLINE | ID: mdl-35911771

ABSTRACT

Objectives: Multiple sclerosis (MS) is a chronic inflammatory autoimmune and degenerative disorder of the central nervous system. Telomeres are protective structures located at the ends of linear chromosomes, and leukocyte telomere length (LTL) is closely connected with cell aging and senescence. However, the relationship between LTL and the risk of MS remains unknown. Methods: We performed a two-sample Mendelian randomization (MR) to evaluate whether LTL was causally associated with MS risk. Results: In our MR analysis, 12 LTL-related variants were selected as valid instrumental variables, and a causal relationship between LTL and MS was suggested. The risk of MS nearly doubled as the genetically predicted LTL shortened by one standard deviation (SD) under the inverse variance weighted (IVW) fixed effect model (odds ratio (OR) = 2.00, 95% confidence interval (CI): 1.52-2.62, p = 6.01e-07). Similar estimated causal effects were also observed under different MR models. The MR-Egger regression test did not reveal any evidence of directional pleiotropy (intercept = -0.005, stand error (SE) = 0.03, p = 0.87). The Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) analysis also indicated no directional pleiotropy or outliers for any LTL-related IVs (p-global test = 0.13). In addition, a leave-one-out sensitivity analysis showed similar findings, which further emphasized the validity and stability of the causal relationship. Conclusions: Our results suggest a potential causal effect of LTL on the risk of MS. Genetically predicted shorter LTL could increase the risk of MS in the European population. LTL should be noted and emphasized in the pathogenesis and treatment of MS.


Subject(s)
Mendelian Randomization Analysis , Multiple Sclerosis , Genome-Wide Association Study , Humans , Leukocytes , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide , Telomere/genetics
12.
Environ Pollut ; 304: 119225, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35351593

ABSTRACT

Soil properties, such as soil pH, soil organic matter (SOM), cation exchange capacity (CEC), are the most important factors affecting cadmium (Cd) accumulation in vegetables. In this study, we conducted big data mining of 31,342 soil and vegetable samples to examine the influence of soil properties (soil pH, SOM, CEC, Zn and Mn content) on the accumulation of Cd in root, solanaceous, and leafy vegetables in Hunan Province, China. Specifically, the Cd accumulation capability was in the following order: leafy vegetables > root vegetables > solanaceous vegetables. The soil property thresholds for safety production in vegetables were determined by establishing nonlinear models between Cd bioaccumulation factor (BCF) and the individual soil property, and were 6.5 (pH), 30.0 g/kg (SOM), 13.0 cmol/kg (CEC), 100-140 mg/kg (Zn), and 300-400 mg/kg (Mn). When soil property values were higher than the thresholds, Cd accumulation in vegetables tended to be stable. Prediction models showed that pH and soil Zn were the leading factors influencing Cd accumulation in root vegetables, explaining 87% of the variance; pH, SOM, soil Zn and Mn explained 68% of the variance in solanaceous vegetables; pH and SOM were the main contributors in leafy vegetables, explaining 65% of the variance. Further, variance partitioning analysis (VPA) revealed that the interaction effect of the corresponding key soil properties contributed mostly to BCF. Meanwhile, partial least squares (PLS) path modeling was employed to analyze the path and the interactive effects of soil properties on Cd BCF. pH and SOM were found to be the biggest two players affecting BCF in PLS-models, and the most substantial interactive influence paths of soil properties on BCF were different among the three types of vegetables.


Subject(s)
Cadmium , Soil Pollutants , Big Data , Cadmium/analysis , China , Soil/chemistry , Soil Pollutants/analysis , Vegetables/chemistry
13.
Plant J ; 110(5): 1319-1331, 2022 06.
Article in English | MEDLINE | ID: mdl-35293072

ABSTRACT

Panicle development is an important determinant of the grain number in rice. A thorough characterization of the molecular mechanism underlying panicle development will lead to improved breeding of high-yielding rice varieties. Frizzy Panicle (FZP), a critical gene for panicle development, is regulated by OsBZR1 and OsARFs at the transcriptional stage. However, the translational modulation of FZP has not been reported. We reveal that the CU-rich elements (CUREs) in the 3' UTR of the FZP mRNA are crucial for efficient FZP translation. The knockout of CUREs in the FZP 3' UTR or the over-expression of the FZP 3' UTR fragment containing CUREs resulted in an increase in FZP mRNA translation efficiency. Moreover, the number of secondary branches (NSB) and the grain number per panicle (GNP) decreased in the transformed rice plants. The CUREs in the 3' UTR of FZP mRNA were verified as the targets of the polypyrimidine tract-binding proteins OsPTB1 and OsPTB2 in rice. Both OsPTB1 and OsPTB2 were highly expressed in young panicles. The knockout of OsPTB1/2 resulted in an increase in the FZP translational efficiency and a decrease in the NSB and GNP. Furthermore, the over-expression of OsPTB1/2 decreased the translation of the reporter gene fused to FZP 3' UTR in vivo and in vitro. These results suggest that OsPTB1/2 can mediate FZP translational repression by interacting with CUREs in the 3' UTR of FZP mRNA, leading to changes in the NSB and GNP. Accordingly, in addition to transcriptional regulation, FZP expression is also fine-tuned at the translational stage during rice panicle development.


Subject(s)
Oryza , 3' Untranslated Regions , Edible Grain/metabolism , Oryza/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism
15.
J Orthop Surg Res ; 16(1): 368, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34107971

ABSTRACT

BACKGROUND: Adjacent segmental intervertebral disk degeneration (ASDD) is a major complication secondary to lumbar fusion. Although ASSD pathogenesis remains unclear, the primary cause of intervertebral disk degeneration (IVDD) development is apoptosis of nucleus pulposus (NP). Raloxifene (RAL) could delay ASDD by inhibiting NP apoptosis. METHODS: An ASDD rat model was established by ovariectomy (OVX) and posterolateral spinal fusion (PLF) on levels 4-5 of the lumbar vertebrae. Rats in the treatment groups were administered 1 mg/kg/d RAL by gavage for 12 weeks, following which, all animals were euthanized. Lumbar fusion, apoptosis, ASDD, and vertebrae micro-architecture were evaluated. RESULTS: RAL maintained intervertebral disk height (DHI), delayed vertebral osteoporosis, reduced histological score, and inhibited apoptosis. The OVX+PLF+RAL group revealed upregulated expression of aggrecan and B-cell lymphoma-2 (bcl2), as well as significantly downregulated expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4), metalloproteinase-13 (MMP-13), caspase-3, BCL2-associated X (bax), and transferase dUTP nick end labeling (TUNEL) staining. Micro-computed tomography (Micro-CT) analysis revealed higher bone volume fraction (BV/TV), bone mineral density (BMD), and trabecular number (Tb.N), and lower trabecular separation (Tb.Sp) in OVX+PLF+RAL group than in the OVX+PLF group. CONCLUSIONS: RAL can postpone ASDD development in OVX rats through inhibiting extracellular matrix metabolic imbalance, NP cell apoptosis, and vertebral osteoporosis. These findings showed RAL as a potential therapeutic target for ASDD.


Subject(s)
Apoptosis/drug effects , Intervertebral Disc Degeneration/prevention & control , Lumbar Vertebrae/surgery , Nucleus Pulposus/pathology , Ovariectomy , Postoperative Complications/prevention & control , Raloxifene Hydrochloride/pharmacology , Raloxifene Hydrochloride/therapeutic use , Selective Estrogen Receptor Modulators/pharmacology , Selective Estrogen Receptor Modulators/therapeutic use , Spinal Fusion/adverse effects , Animals , Bone Density/drug effects , Disease Models, Animal , Disease Progression , Female , Intervertebral Disc Degeneration/etiology , Intervertebral Disc Degeneration/pathology , Osteoporosis/etiology , Osteoporosis/prevention & control , Ovariectomy/adverse effects , Postoperative Complications/etiology , Postoperative Complications/pathology , Rats, Sprague-Dawley , Spinal Fusion/methods
16.
Orthop Surg ; 13(5): 1662-1672, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34105258

ABSTRACT

OBJECTIVE: To assess the effects of PTH (1-34) on bone and cartilage metabolism in a collagenase-induced mouse model of osteoarthritis (OA) and examine whether PTH (1-34) affects the expression of JAK2/STAT3 and WNT5A/ROR2 in this process. METHODS: Eighteen 12-week-old male C57Bl/6 mice were randomly assigned into three groups as follows: sham group (Group A), the collagenase + saline injection group (Group B), and the collagenase + PTH (1-34) treatment group (Group C). Collagenase was injected (intra-articular) into the knee joint of Group B and C. The PTH (1-34)-treatment was started at 6 weeks after the operation and lasted for 6 weeks. Cartilage pathology was evaluated by gross visual, histological, and immunohistochemical assessments. Subchondral bone was evaluated by microcomputed tomography (micro-CT) and immunohistochemical analyses. RESULTS: The OARSI macroscopic and microscopic scores of Group B were higher than those of Group A (P = 0.026; P = 0.002, respectively). Group C showed statistically significant differences in macroscopic and microscopic scores from Group B (P = 0.041; P = 0.008, respectively). The results showed that the Col-II and AGG expression levels in the cartilage tissue were significantly lower in Group B than Group A (P < 0.001; P = 0.008, respectively). The Col-II and AGG expression levels were significantly higher in Group C than Group B (P = 0.009; P = 0.014, respectively). MMP-13, ADAMTS-4, Caspase-3, P53, and Bax expression levels were significantly higher in Group B than the Group A (P < 0.001; P < 0.001; P = 0.04; P < 0.001; P = 0.005, respectively); however, the cartilage tissue in Group C showed significantly less ADAMTS-4, MMP-13, Caspase-3, P53, and Bax expression than Group B (P < 0.001, P < 0.001, P = 0.044; P = 0.002; P = 0.005, respectively). Over-expressed JAK2/STAT3 and WNT5A/ROR2 were observed in both cartilage and subchondral bone in this model; however, these changes were prevented by PTH (1-34) treatment. These parameters (bone mineral density, bone volume ratio, trabecular bone pattern factor, and structure model index) of micro-CT indicated subchondral bone loss and architecture changes in Group B, but improvements in these parameters in Group C. CONCLUSIONS: PTH (1-34) exhibits protective effects on both cartilage and subchondral bone in a collagenase-induced OA mouse model, and it may be involved in down-regulating the expression of JAK2/STAT3 and WNT5A/ROR2.


Subject(s)
Cartilage, Articular/drug effects , Janus Kinase 2/metabolism , Osteoarthritis, Knee/drug therapy , Parathyroid Hormone/pharmacology , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , STAT3 Transcription Factor/metabolism , Wnt-5a Protein/metabolism , Animals , Collagenases , Disease Models, Animal , Down-Regulation , Male , Mice , Mice, Inbred C57BL
17.
Arthritis Res Ther ; 23(1): 152, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34049577

ABSTRACT

BACKGROUND: Although adjacent segmental intervertebral disc degeneration (ASDD) is one of the most common complications after lumbar fusion, its exact mechanism remains unclear. As an antibody to RANKL, denosumab (Dmab) effectively reduces bone resorption and stimulates bone formation, which can increase bone mineral density (BMD) and improve osteoporosis. However, it has not been confirmed whether Dmab has a reversing or retarding effect on ASDD. METHODS: Three-month-old female Sprague-Dawley rats that underwent L4-L5 posterolateral lumbar fusion (PLF) with spinous-process wire fixation 4 weeks after bilateral ovariectomy (OVX) surgery were given Dmab 4 weeks after PLF surgery (OVX+PLF+Dmab group). In addition, the following control groups were defined: Sham, OVX, PLF, and OVX+PLF (n=12 each). Next, manual palpation and X-ray were used to evaluate the state of lumbar fusion. The bone microstructure in the lumbar vertebra and endplate as well as the disc height index (DHI) of L5/6 was evaluated by microcomputed tomography (µCT). The characteristic alterations of ASDD were identified via Safranin-O green staining. Osteoclasts were detected using tartrate-resistant acid phosphatase (TRAP) staining, and the biomechanical properties of vertebrae were evaluated. Aggrecan (Agg), metalloproteinase-13 (MMP-13), and a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4) expression in the intervertebral disc were detected by immunohistochemistry and real-time polymerase chain reaction (RT-PCR) analysis. In addition, the expression of CD24 and Sox-9 was assessed by immunohistochemistry. RESULTS: Manual palpation showed clear evidence of the fused segment's immobility. Compared to the OVX+PLF group, more new bone formation was observed by X-ray examination in the OVX+PLF+Dmab group. Dmab significantly alleviated ASDD by retaining disc height index (DHI), decreasing endplate porosity, and increasing vertebral biomechanical properties and BMD. TRAP staining results showed a significantly decreased number of active osteoclasts after Dmab treatment, especially in subchondral bone and cartilaginous endplates. Moreover, the protein and mRNA expression results in discs (IVDs) showed that Dmab not only inhibited matrix degradation by decreasing MMP-13 and ADAMTS-4 but also promoted matrix synthesis by increasing Agg. Dmab maintained the number of notochord cells by increasing CD24 but reducing Sox-9. CONCLUSIONS: These results suggest that Dmab may be a novel therapeutic target for ASDD treatment.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Osteoporosis , Animals , Denosumab , Female , Humans , Lumbar Vertebrae , Ovariectomy , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
18.
J Gene Med ; 23(9): e3329, 2021 09.
Article in English | MEDLINE | ID: mdl-33625798

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) crucially regulate tumor progression. In this study, we examined the functional roles and mechanisms of hsa_circ_0003489 in multiple myeloma (MM). METHODS: Upon altering the expressions of hsa_circ_0003489, miR-874-3p, and/or histone deacetylase 1 (HDAC1) in MM1.R cells and treating them with bortezomib (BTZ), cell viability was examined by CCK-8 assay; cell proliferation by Ki-67 immunofluorescence; apoptosis by TUNEL staining, flow cytometry, and western blot; and autophagy by electron microscopy and western blot. The interaction between hsa_circ_0003489 and miR-874-3p as well as that between miR-874-3p and HDAC1 was examined by expressional analysis, dual luciferase reporter assay, and RNA immunoprecipitation. The in vivo impacts of hsa_circ_0003489 on MM growth and sensitivity to BTZ were examined using an MM xenograft mouse model. RESULTS: Knocking down hsa_circ_0003489 significantly inhibited the viability, cell proliferation, and autophagy, while promoting the apoptosis of MM cells in vitro and MM xenograft in vivo. Suppressing hsa_circ_0003489 also further boosted the cytotoxic effects of BTZ in MM cells and reversed its promoting effect on autophagy. Mechanically, hsa_circ_0003489 acted as a sponge of miR-874-3p and positively regulated the expression of miR-874-3p target, HDAC1. MiR-874-3p and HDAC1 essentially mediated the effects of hsa_circ_0003489 on cell viability, proliferation, apoptosis, and autophagy. CONCLUSION: The hsa_circ_0003489/miR-874-3p/HDAC1 axis critically regulates the balance between apoptosis and autophagy. Silencing hsa_circ_0003489 sensitizes MM cells to BTZ by inhibiting autophagy and thus may boost the therapeutic effects of BTZ.


Subject(s)
Apoptosis , Autophagy , Histone Deacetylase 1/metabolism , MicroRNAs/metabolism , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , RNA, Circular/physiology , Animals , Antineoplastic Agents/pharmacology , Bortezomib/pharmacology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Histone Deacetylase 1/genetics , Humans , Mice , MicroRNAs/genetics , Multiple Myeloma/drug therapy , Xenograft Model Antitumor Assays
19.
Bosn J Basic Med Sci ; 21(3): 284-293, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33259777

ABSTRACT

Overexpression of transforming growth factor-beta 1 (TGF-ß1) and subchondral bone remodelling play key roles in osteoarthritis (OA). Raloxifene (RAL) reduces the serum level of TGF-ß1 in postmenopausal women. However, the effect of RAL on TGF-ß1 expression in articular cartilage is still unclear. Therefore, we aimed to investigate the protective effect of RAL on osteoporotic osteoarthritis via affecting TGF-ß1 expression in cartilage and the metabolism of subchondral bone. Osteoporotic osteoarthritis was induced by a combination of anterior cruciate transection (ACLT) and ovariectomy (OVX). Rats were divided into five groups (n = 12): The sham group, the ACLT group, the OVX group, the ACLT + OVX group, and the RAL group (ACLT + OVX + RAL, 6.25 mg/kg/day for 12 weeks). Assessment was performed by histomorphology, microcomputed tomography (micro-CT) scan, immunohistochemistry, and tartrate-resistant acid phosphatase (TRAP) staining. We found that severe cartilage degeneration was shown in the ACLT + OVX group. The histomorphological scores, the levels of TGF-ß1, and its related catabolic enzymes and osteoclasts numbers in the ACLT + OVX group were higher than those in other groups (p < 0.05). Furthermore, structure model index (SMI) and trabecular spacing (Tb.Sp) were decreased (p < 0.05), while bone mineral density (BMD), bone volume fraction (BV/TV), and trabecular number (Tb.N) were increased by RAL compared with the ACLT + OVX group (p < 0.05). Our findings demonstrated that RAL in clinical doses retards the development of osteoporotic osteoarthritis by inhibiting the overexpression of TGF-ß1 in cartilage and regulating the metabolism of subchondral bone. These results provide support for RAL in the expansion of clinical indication for prevention and treatment in postmenopausal osteoarthritis.


Subject(s)
Bone Remodeling/drug effects , Cartilage, Articular/metabolism , Osteoarthritis/drug therapy , Raloxifene Hydrochloride/pharmacology , Transforming Growth Factor beta1/metabolism , Animals , Female , Osteoporosis , Ovariectomy , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
20.
Bone Joint Res ; 9(10): 675-688, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33101657

ABSTRACT

AIMS: Parathyroid hormone (PTH) (1-34) exhibits potential in preventing degeneration in both cartilage and subchondral bone in osteoarthritis (OA) development. We assessed the effects of PTH (1-34) at different concentrations on bone and cartilage metabolism in a collagenase-induced mouse model of OA and examined whether PTH (1-34) affects the JAK2/STAT3 signalling pathway in this process. METHODS: Collagenase-induced OA was established in C57Bl/6 mice. Therapy with PTH (1-34) (10 µg/kg/day or 40 µg/kg/day) was initiated immediately after surgery and continued for six weeks. Cartilage pathology was evaluated by gross visual, histology, and immunohistochemical assessments. Cell apoptosis was analyzed by TUNEL staining. Microcomputed tomography (micro-CT) was used to evaluate the bone mass and the microarchitecture in subchondral bone. RESULTS: Enhanced matrix catabolism, increased apoptosis of chondrocytes in cartilage, and overexpressed JAK2/STAT3 and p-JAK2/p-STAT3 were observed in cartilage in this model. All of these changes were prevented by PTH (1-34) treatment, with no significant difference between the low-dose and high-dose groups. Micro-CT analysis indicated that bone mineral density (BMD), bone volume/trabecular volume (BV/TV), and trabecular thickness (Tb.Th) levels were significantly lower in the OA group than those in the Sham, PTH 10 µg, and PTH 40 µg groups, but these parameters were significantly higher in the PTH 40 µg group than in the PTH 10 µg group. CONCLUSION: Intermittent administration of PTH (1-34) exhibits protective effects on both cartilage and subchondral bone in a dose-dependent manner on the latter in a collagenase-induced OA mouse model, which may be involved in regulating the JAK2/STAT3 signalling pathway.Cite this article: Bone Joint Res 2020;9(10):675-688.

SELECTION OF CITATIONS
SEARCH DETAIL
...