Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Plant Dis ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814708

ABSTRACT

Acer oblongum is native to Southwest China and is also distributed in Nepal and Northern India. It is an excellent garden ornamental tree species, suitable for solitary planting in courtyards and parks. From June to August 2022, severe leaf blight occurred on A. oblongum in Baihe Wetland Park (32°5'42" N, 112°28'13" E) in Nanyang City, China. The foliar disease rate reached 59% (n=100). Early signs were yellow spots on the leaves, mainly on the middle and edge parts. Then, the lesions gradually expanded, became amorphous, and turned yellowish brown, eventually led to necrosis on leaves and branches. Twenty diseased leaves were collected and the junction areas between infected and healthy tissues were cut into 5 x 5 mm2 pieces. The collected plant materials were sterilized in 75% ethanol and 1% NaClO for 30 s and 1 minute, respectively, followed by rinsing in sterile water, and placing on a potato dextrose agar (PDA) plate supplemented with 50 µg ml-1 streptomycin at 25 °C for 3 days. Colony edges were cut and transferred to new PDA plates for purification culture. A total of 18 purified fungal strains were obtained, which showed similar phenotypes in morphological characteristics. All colonies had spread radially with wavy surfaces, and dense cream to white aerial hyphae. After 14 days in culture, black fruiting bodies appeared. Conidia were fusiform to slightly clavate, with five cells and two or three setae, 4.2 to 7.9 µm × 17.5 to 25.4 µm in diameter (n = 100). The apical and basal cells and setae were colorless, three median cells were brown, and the middle cell was dark brown. Morphological characteristics of all 18 strains were consistent with the genus description of Neopestalotiopsis spp. (Maharachchikumbura et al. 2014). Further molecular identification showed that the ITS region sequences of all strains have extremely high homology with Neopestalotiopsis spp. The ß-tubulin gene (TUB), and the translation elongation factor 1-alpha gene (TEF1) were amplified for molecular identification (Shu et al. 2020). The sequences of three representative strains (FE-05, 09, 16) from different regions were deposited in GenBank with accession Nos. OQ867279, OQ867288, OQ867289 (ITS), OQ870207, OQ870208, OQ870209 (TUB), and OQ870204, OQ870205, OQ870206 (TEF1). BLASTn analysis of these sequences showed 99 to 100% identity to Neopestalotiopsis clavispora strains (OK655673, MZ648263 for ITS, ON000362, MZ286974 fr TUB, MH423941, MK512481 for TEF1). These morphological features and molecular identification indicated that the pathogen has the same characteristics as N. clavispora. Pathogenicity was tested on ten healthy 3-month-old seedlings using the three representative strains through in vivo experiments. For each strain, the conidial suspension (106 conidia ml-1) in absorbent cotton balls (50 µl of inoculum) were inoculated onto the healthy leaves of two seedlings, while a total of two other plants were served with sterile water as a blank control. The plants were potted in a climate incubator at 28°C and a relative humidity of approximately 90%. Symptoms consistent with natural lesions were observed on the inoculated leaves after 5 days while the control plants remained healthy. The strains of N. clavispora were reisolated from the symptomatic inoculated leaves, fulfilling Koch's postulates. N. clavispora is known to cause disease in a variety of plants in China, such as Dendrobium officinale (Cao et al., 2022), Fragaria ananassa (Shi et al., 2022), and Garcinia mangostana (Qiu et al., 2019). To the best of our knowledge, this is the first report of N. clavispora causing leaf blight on A. oblongum in China. The yellowing and falling off of leaves would seriously affects the garden landscape. It is necessary to further clarify the host range of the pathogen to select appropriate landscape matching plants in future planning.

2.
Plant Dis ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625692

ABSTRACT

Catalpa bungei originates from China. It is fast-growing and possesses a vertically aligned trunk, rendering it a commendable construction material and a significant economic species. In July 2022, a serious leaf spot occurred in the LanLake farm (surveyed area of about 700 acres) in Nanyang (33°3'23" N, 112°28'50" E), Henan Province, China. The incidence rate of leaf disease reached 54% (n=100). The disease initially manifested as irregular round spots with a yellowish-brown hue, subsequently extending in all directions. Later, the lesion periphery exhibited a darkening effect, leading to yellowing. Twenty diseased leaves were randomly collected and cut into small pieces at the interfaces between infected and healthy tissues. The tissues were sterilized in a solution of 75% ethanol and 1% NaClO for 30 seconds and 1 minute, respectively. After rinsing in sterile water, the pieces were placed on potato dextrose agar (PDA) plates and incubated at 25°C for 5 days. A total of 29 purified fungal strains were acquired, exhibiting comparable phenotypes in terms of morphological characteristics. Three strains (QS1-1, QS1-2, and QS1-3) were isolated for subsequent investigations. The colony exhibited abundant aerial mycelium with shades ranging from dark green to grey-brown on the reverse side. To analyze the morphological characteristics of conidia, potato carrot agar (PCA) was used as the culture medium and incubated at 25°C with a 12-hour light/dark cycle. Conidia were obclavate or spheroidal, dark brown, with 3 to 5 transverse septa, and 1 to 4 longitudinal septa, measuring 12.4 to 36.7 × 4.4 to 9.0 µm (n=100), with conical beak lengths ranging from 0 to 4.3 µm. These morphological traits suggested that the pathogen shares similarities with the Alternaria species. The rDNA internal transcribed spacer (ITS), translation elongation factor 1-alpha gene (tef1), glyceraldehyde 3-phosphate dehydrogenase gene (gapdh), and RNA polymerase II second largest subunit (rpb2) were amplified for further molecular identification. The resultant sequences were submitted to GenBank with the following accession numbers: OR733559, OR742124, OR761873 (ITS), OR939796, OR939797, OR939798 (tef1), OR939801, OR939802, OR939803 (gapdh), and PP054846, PP054847, PP054848 (rpb2). A Phylogenetic tree was constructed of combined genes (ITS, tef1, gapdh, and rpb2) of sequences, alongside the sequences of the type strains by the neighbor-joining method. The three strains formed a clade with the strains CBS 121456 of Alternaria alternata in phylogenetic trees, being separated from other Alternaria spp. The morphological features and molecular analyses supported the strains as members of Alternaria alternata (Woudenberg et al. 2015). To validate pathogenicity, a conidial suspension (106 conidia ml-1) of all three strains was inoculated onto three healthy leaves of five seedlings, with 50 µl of inoculum absorbed with cotton balls. Another group of five plants received sterile water as a control. All plants were incubated in a climate chamber at 28°C and 90% relative humidity. Four days post-inoculation, lesions resembling natural phenomena were observed, whereas control plants showed no symptoms. Subsequent reisolation produced cultures that were morphologically and molecularly identical to the original strains, fulfilling Koch's postulates. Stem canker of C. bungei caused by Phytophthora nicotianae has been reported in China (Chang et al. 2022). This is the first report of A. alternata causing leaf spots on C. bungei in China. Further research is required on management options to control this disease and the host range still needs to be clarified for accurate disease management.

3.
Analyst ; 148(13): 2882-2891, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37255369

ABSTRACT

Green fluorescent proteins (GFPs) are useful and essential biomolecules that have revolutionized biosensor research. Researchers have extensively utilized GFPs for designing fluorescence biosensors due to their intrinsic fluorescence, high stability, and ability to undergo permutation or mutation. This review provides a concise summary of recent advancements in developing GFP-based biosensors. The construction approaches for GFP-based biosensors can be categorized into four types: (1) single GFP-based biosensors; (2) fluorescence resonance energy transfer-based biosensors; (3) GFP-based split biosensors; and (4) GFP chromophore analogy-based biosensors. We highlight the applications of these sensors in biomolecule detection and life sciences, while also sharing personal insights into the challenges associated with GFP-based biosensors and proposing future research directions.


Subject(s)
Biosensing Techniques , Green Fluorescent Proteins/genetics , Fluorescence Resonance Energy Transfer , Mutation
4.
Plant Dis ; 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36410016

ABSTRACT

Pomegranate (Punica granatum L.), which is native to central Asia, is considered as one of the most renowned commercial fruit trees in the world. The planting area in China is roughly 120 thousand hectares. In June 2020, symptoms of leaf spot on P. granatum appeared in Nanyang City (32º40´34˝N, 111º44´20˝E), Henan Province, with an incidence rate of 35% in several 3.3-hectare orchards. Initially, the lesions showed as round or subrounded brown spots on affected leaves. The spots then progressively developed into irregular lesions with distinct yellow halos surrounding them. Parts of the lesions were weakly zonate, which finally led to leaf withering and falling off. Diseased tissues were cut into 5×5 mm2 pieces, which were surface sterilized with 75% ethanol solution for 30 s, washed 3 times in sterilized water, and put on potato dextrose agar (PDA) plates supplemented with 50 µg ml-1 streptomycin. A total of 16 purified fungal isolates with similar phenotypic features were obtained. Three randomly chosen isolates SLY11, SLY24, and SLY25 were utilized for the investigation. Fungal colonies on PDA were first white to gray and later mycelium became olive green to blackish brown. To examine the morphological properties of conidia, we utilized potato carrot agar (PCA) culture medium and incubated it at 23°C under a 12-hour light/dark alternation. Conidia were obclavate or spheroidal, dark brown, with 3 to 5 transverse septa and 1 to 4 longitudinal septa. Conidiophores were septate, solitary, and measured 22.7 (±4.64) × 10.6 (±2.15) µm (n=50), with a conical beak length of 0 to 5.5 µm. The rDNA internal transcribed spacer (ITS), translation elongation factor 1-alpha gene (TEF1), ß-tubulin gene (TUB), and glyceraldehyde 3-phosphate dehydrogenase gene (GAPDH) were amplified using primer pairs ITS1/ITS4, EF1-728F/EF1-986R, Bt2a/Bt2b, and GDF1/GDF2 from genomic DNA. Sequences were submitted to GenBank with accession numbers OL840230, OL840231, OL840232 for ITS, OL982540, OL982541, OL982542 for TEF1, OL982543, OL982544, OL982545 for TUB, OL862608, OL862609, OL862610 for GAPDH sequences of isolates SLY11, SLY24, and SLY25, respectively. BLASTn analysis of ITS (OL840230), TEF1 (OL982540), TUB (OL982543), GAPDH (OL862608) sequences indicated 100, 99.59, 99.68, and 100% similarity to the sequences of Alternaria alternata strain HC-2 (MT644140), BJFA-1 (MK895958), CS36-5 (KY814630), and ag1 (KP057228) in GenBank. Isolates SLY11, SLY24, and SLY25 formed a clade with the type strains CBS 130265 and CBS 130258 of A. alternata in phylogenetic trees established, clearly seperating from other Alternaria spp. The morphological features and molecular analyses supported the isolates as members of A. alternata. To validate the pathogenicity of the isolates, ten healthy leaves of 3-year-old potted pomegranate trees were utilized for testing and inoculated with conidial suspension (106 conidia ml-1), 20 µl each leaf. Control plants were inoculated with sterilized water. An additional pathogenicity test was repeated on wounded leaves. The inoculated plants were placed at 28°C in a greenhouse (12 h light per day and 90% relative humidity) for 5 days. The pathogenicity testing was conducted three times. Distinct lesions were found on the nonwounded and wounded leaves of inoculated plants after 3 to 5 days. The morphology and ITS sequences of the fungi that were reisolated from each of the inoculated plants were similar to that of the inocula, fulfilling Koch's postulates. Fruit rot of pomegranate induced by A. alternata was not identified in our investigation. A. alternata is reported to induce leaf spot disease on P. granatum in India (Zakir et al. 2009), Israel (Ezra et al. 2010), Spain (Garcia-Jimenez et al. 2014). To our knowledge, this is the first report of A. alternata causing leaf spot disease on P. granatum in China. Severe leaf disease caused by A. alternata can lead to reduced pomegranate yields in the harvest stages. This note will aid in pathogen identification and disease control.

5.
Plant Dis ; 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36096099

ABSTRACT

Euonymus japonicas is widely planted as an important landscape species throughout China. In June 2021, a serious gray blight disease was detected on E. japonicas in Henan Province (32°30'58" N, 112°19'44" E), causing severe defoliation of infected trees with a foliar disease incidence of 52 to 70% (n = 100). Gray spots initially appeared on leaves, gradually expanded into irregular white blotches with dark brown borders, eventually leading to wilting and death of the leaves. The junctions between the lesion and healthy tissue of infected leaves were cut into 3 × 3-mm pieces, surface sterilized with 1% NaClO solution for 1 min, rinsed in sterile water, and placed on PDA plates with 50 µg/ml of streptomycin. Three isolates (HY94, HY95, and HY98) were selected for subsequent experiments. The colonies reached 80-85 mm diam after 7 days at 25°C, with undulated margins, white to pale in color, with moderate aerial mycelium on the surface. Conidiomata were globose, solitary, and dark black. Conidia were ellipsoid, straight to slightly curved, 4-septate, 19 to 26.4 × 5 to 7.5 µm (n=100). The apical cell was cylindrical and hyaline, with 2 to 3 tubular apical appendages, unbranched, filiform, 2.5 to 3.5 µm in length. The basal appendage was single, unbranched, centric, 1.5 to 3 µm long. The characteristics were close to those of Pestalotiopsis spp. (Maharachchikumbura et al. 2013). The genomic DNA was extracted, and the rDNA internal transcribed spacer (ITS), the ß-tubulin gene (TUB), and the translation elongation factor 1-alpha gene (TEF1) were amplified by primers ITS1/ITS4, Bt2a/Bt2b, and EF1-728F/EF1-986R, respectively (Carbone and Kohn, 1999). Sequences were submitted to GenBank with accession numbers OL840327-OL840329(ITS), OL961454-OL961456(TUB), and OL961448-OL961450 (TEF1). BLASTn analyses of ITS, TUB, and TEF1 sequences exhibited 99.46, 99.05, and 96.53% similarity to the sequences of Pestalotiopsis disseminata strain MEAN1166 (ITS, 548/551 bp; MT374688) (Silva et al. 2020), PSH2000I-066 (TUB, 418/422 bp; DQ333575), and TAP29O082 (TEF1, 250/259 bp; AB453850), respectively in GenBank. The three isolates formed a clade with the type strains, MEAN 1166 and MAFF238347 of P. disseminata in phylogenetic trees, being clearly seperated from other Pestalotiopsis spp. Based on morphological and molecular evidence, the pathogen was identified as P. disseminata (Maharachchikumbura et al. 2011). To fulfill Koch's postulates, pathogenicity was tested with three isolates. Ten healthy leaves of 5-year-old intact plants were used per isolate and inoculated with mycelial plugs on both nonwounded and wounded leaves. Control leaves were inoculated with agar plugs. The inoculated plants were placed at 28°C in a greenhouse (90% relative humidity). Distinct lesions were observed after 10 days. The pathogen reisolated was identical to that of the original cultures according to phenotype and ITS sequences. The control leaves showed no obvious symptoms. P. disseminata is known to cause disease on several important plants in China, such as Camellia japonica (Zhang et al. 2012), Pinus armandii (Hu et al. 2007), and Tripterygium wilfordii (Kumar et al. 2004). This is the first report of gray blight disease caused by P. disseminata on E. japonicas in China and worldwide. The fungal pathogen identification will provide valuable information for prevention and management of gray blight disease associated with E. japonicas.

6.
Plant Dis ; 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36018557

ABSTRACT

Euonymus japonicas belong to the family Celastraceae and is native to Japan. This ornamental plant has been widely introduced for cultivation as a hedge plant in China. From August to October 2021, severe leaf lesions were observed on E. japonicas in Meicheng garden in Nanyang (32°59'42"N, 112°33'13"E), Henan Province, China. The disease had very wide coverage in the surveyed areas, with foliar diseases reaching 50%-69% (n=200). The early symptoms were yellow or brown specks on the leaves, mostly at the tip and margin of the leaves. Then the specks gradually expanded into round amorphous and became dark brown, eventually leading to large irregular or circular lesions and even branch necrosis. Twenty symptomatic samples were collected from several individual plants, and the junction areas between infected and healthy tissues were cut into 5×5 mm pieces. The tissues were sterilized in 75% ethanol for 30 seconds and 1% NaClO solution for 1 min, rinsed thrice in sterile water and placed on potato dextrose agar (PDA) plates supplemented with 50 µg/ml of streptomycin, incubated at 25°C for 3 days. The edges of the colony were cut and transferred to new PDA plates for purification. These strains showed similar phenotypes in morphological characters. Three representative purified strains (HY12, HY16, and HY17) were used for further study. Colonies were fast-growing, massive sparse aerial hyphae, initially white, later turning gray and black. Hyphae were branched, septa, and transparent. Conidia were single-celled, dark black, oblate, or nearly spherical, and measured 10.7 to 15.4 µm × 9.8 to 15.5 µm in diameter (n=100). For molecular identification, the rDNA internal transcribed spacer (ITS), the ß-tubulin gene (TUB), and the translation elongation factor 1-alpha gene (TEF1) were amplified from genomic DNA by primers ITS1/ITS4, Bt2a/Bt2b, and EF1-728F/EF1-986R, respectively (Carbone and Kohn, 1999). Sequences were submitted to GenBank with accession numbers OL840319, OL840320, OL840321 for the ITS sequences, OL961451, OL961452, OL961453 for the TUB sequences, and OL961445, OL961446, OL961447 for the TEF1 sequences of the strains HY12, HY16, and HY17, respectively. BLASTn analyses of these sequences exhibited 99 to 100% identity to Nigrospora oryzae strains 62L1, LC6923, and DP-J2 (MZ151384 of ITS, KY019581 of TUB, and MW562242 of TEF1). These morphological features and molecular identification indicated that the pathogen possessed identical characteristics as N. oryzae (Berk. &Broome) Petch. Pathogenicity was tested through in vivo experiments. Mycelial plugs of the pathogen strains were inoculated on the wounded leaflets, meanwhile, agar plugs served as blank controls. Five 2-year-old plants were grown in pots in a climate incubator maintained at a temperature of 28°C and relative humidity of approximately 90%. Symptoms consistent with those previously described were observed on the inoculated leaves of four plants after 3 to 7 days while the control plants remained healthy. The strains of N. oryzae were reisolated from the symptomatic inoculated leaves, fulfilling Koch's postulates. N. oryzae is known to cause disease on a variety of ornamental plants in China, such as purple blow maple (Sun et al. 2011), cleyera (Wang et al. 2017), cotton rose (Han et al. 2021), and Costus speciosus (Sun et al. 2021). To our knowledge, this is the first report of N. oryzae leaf spot on E. japonicas in China. This identification research will be helpful for subsequent disease control and field management of hedge plants.

7.
Front Plant Sci ; 12: 704905, 2021.
Article in English | MEDLINE | ID: mdl-34305991

ABSTRACT

A continuous increase in ambient temperature caused by global warming has been considered a worldwide threat. As sessile organisms, plants have evolved sophisticated heat shock response (HSR) to respond to elevated temperatures and other abiotic stresses, thereby minimizing damage and ensuring the protection of cellular homeostasis. In particular, for perennial trees, HSR is crucial for their long life cycle and development. HSR is a cell stress response that increases the number of chaperones including heat shock proteins (HSPs) to counter the negative effects on proteins caused by heat and other stresses. There are a large number of HSPs in plants, and their expression is directly regulated by a series of heat shock transcription factors (HSFs). Therefore, understanding the detailed molecular mechanisms of woody plants in response to extreme temperature is critical for exploring how woody species will be affected by climate changes. In this review article, we summarize the latest findings of the role of HSFs and HSPs in the HSR of woody species and discuss their regulatory networks and cross talk in HSR. In addition, strategies and programs for future research studies on the functions of HSFs and HSPs in the HSR of woody species are also proposed.

8.
Sheng Wu Gong Cheng Xue Bao ; 34(1): 12-23, 2018 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-29380567

ABSTRACT

Aphids are major agricultural pests that cause significant yield losses of crops each year. (E)-ß-farnesene (EßF), as the main component of the aphid alarm pheromones, can interrupt aphid feeding and cause other conspecies in the vicinity to become agitated or disperse from their host plant. Furthermore, EßF can function as a kairomone in attracting aphid predators. EßF synthase genes, which encode enzymes that convert farnesyl diphosphate (FPP) to the acyclic sesquiterpene EßF, have been isolated and characterized from peppermint (Mentha × piperita and Mentha asiatica), Yuzu (Citrus junos), Douglas fir (Pseudotsuga menziesii), sweet wormwood (Artemisia annua) and chamomile (Matricaria recutita), respectively. Transgenic plant overexpressing EßF synthase genes has been one of the most efficient strategies for aphid management. In this review, the current statuses of transgenic plants engineered for aphid resistance were summarized. The plant-derived EßF synthase genes with their potential roles in aphid management via genetic-modified (GM) approaches were reviewed. The existing problem in GM plants with EßF synthase gene, such as low EßF emission was usually detected in the transgenic plant, was discussed and the development direction in this area was proposed.


Subject(s)
Aphids , Metabolic Engineering , Plants, Genetically Modified/genetics , Pyrophosphatases/genetics , Animals , Sesquiterpenes
9.
Sci Rep ; 7(1): 2607, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28572621

ABSTRACT

The Na+/H+ antiporters (NHXs) are secondary ion transporters to exchange H+ and transfer the Na+ or K+ across membrane, they play crucial roles during plant development and stress responses. To gain insight into the functional divergence of NHX genes in poplar, eight PtNHX were identified from Populus trichocarpa genome. PtNHXs containing 10 transmembrane helices (TMH) and a hydrophilic C-terminal domain, the TMH compose a hollow cylinder to provide the channel for Na+ and H+ transport. The expression patterns and cis-acting elements showed that all the PtNHXs were response to single or multiple stresses including drought, heat, cold, salinity, MV, and ABA. Both the co-expression network and protein-protein interaction network of PtNHXs implying their functional divergence. Interestingly, although PtNHX7 and PtNHX8 were generated by whole genome duplication event, they showed significant differences in expression pattern, protein structure, co-expressed genes, and interacted proteins. Only PtNHX7 interact with CBL and CIPK, indicating PtNHX7 is the primary NHX involved in CBL-CIPK pathway during salt stress responses. Natural variation analysis based on 549 P. trichocarpa individuals indicated the frequency of SNPs in PtNHX7 was significantly higher than other PtNHXs. Our findings provide new insights into the functional divergence of NHX genes in poplar.


Subject(s)
Populus/genetics , Sodium-Hydrogen Exchangers/genetics , Stress, Physiological/physiology , Evolution, Molecular , Gene Duplication , Gene Expression Regulation , Gene Frequency , Genetic Speciation , Ion Transport , Polymorphism, Single Nucleotide , Potassium/metabolism , Protein Binding , Protein Interaction Domains and Motifs/genetics , Sodium/metabolism , Sodium-Hydrogen Exchangers/metabolism , Transcriptome
10.
PLoS One ; 11(8): e0161351, 2016.
Article in English | MEDLINE | ID: mdl-27580166

ABSTRACT

A wheat stay-green mutant, tasg1, was observed to exhibit significantly delayed senescence in the late developmental stage. The photosynthetic capacity of the flag leaf was greater in tasg1 than in wild type (WT) plants. In addition, the grain volume of tasg1 was significantly higher than that of WT at the early filling stage. The content of various cytokinins (CKs) in the grain was significantly higher in tasg1 than in WT and was accompanied by an upregulated expression of some cell cycle-related genes. Examination of the metabolism of soluble sugars in tasg1 and WT revealed that the concentrations of glucose (Glu), fructose (Fru), and sucrose (Suc) were higher in the flag leaves and grains of tasg1 than in WT plants. The activities of sucrose-phosphate synthase (SPS), sucrose synthase (SuSy), and cell wall invertase (CW-invertase) were higher in tasg1, suggesting an altered metabolism and transport of soluble sugars. Furthermore, when tasg1 was treated with the CK inhibitor lovastatin, the activity of invertase was inhibited and was associated with premature senescence phenotype. However, the activity of invertase was partially recovered in tasg1 when treated with 6-benzylaminopurine (BAP). The trend of change in the concentrations of Glu, Fru, and Suc was similar to that of invertase. Our results suggest that CKs might regulate the stay-green phenotype of tasg1 by regulating the invertase activity involved in Suc remobilization.


Subject(s)
Cell Cycle , Cytokinins/metabolism , Gene Expression Regulation, Plant , Mutation , Plant Proteins/biosynthesis , Sucrose/metabolism , Triticum/metabolism , Cytokinins/genetics , Gene Expression Regulation, Enzymologic , Phenotype , Plant Proteins/genetics , Triticum/genetics
11.
Plant Cell Rep ; 35(3): 585-99, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26650838

ABSTRACT

KEY MESSAGE: By measuring the cytokinin content directly and testing the sensitivity to the cytokinin inhibitor lovastatin, we demonstrated that tasg1 cytokinin metabolism is different from wild-type. Our previous studies have indicated that compared with wild-type (WT) plants, a wheat stay-green mutant tasg1 exhibited delayed senescence. In this study, we found that the root development of tasg1 occurred later than that of WT. The number of lateral roots was fewer, but the lateral root length was longer in tasg1 than in WT, which resulted in a lower root to shoot ratio in tasg1 than WT. The levels of cytokinin (CK), CK activity, and expression of CK metabolic genes were measured. We found that the total CK content in the root tips and leaf of tasg1 was greater than in WT. The accumulation of mRNA of the CK synthetic gene (TaIPT) in tasg1 was higher than in WT at 9 and 11 days during seedling growth, but the expression of CK oxidase gene (TaCKX) was significantly lower in tasg1. Furthermore, the CK inhibitor lovastatin was used to inhibit CK activity. When treated with lovastatin, both the chlorophyll content and thylakoid membrane protein stability were significantly lower in tasg1 than WT, consistent with the inhibited expression of senescence-associated genes (TaSAGs) in tasg1. Lovastatin treatment also inhibited the antioxidative capability of wheat seedlings, and tasg1 was more sensitive to lovastatin than WT, as indicated by the MDA content, protein carbonylation, and antioxidant enzyme activity. The decreased antioxidative capability after lovastatin treatment may be related to the down-regulation of some antioxidase genes. These results suggest that the CK metabolism was altered in tasg1, which may play an important role in its ability to delay senescence.


Subject(s)
Cytokinins/metabolism , Mutation , Plant Proteins/genetics , Triticum/genetics , Chlorophyll/metabolism , Cytokinins/antagonists & inhibitors , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Immunoblotting , Lovastatin/pharmacology , Malondialdehyde/metabolism , Metabolic Networks and Pathways/genetics , Phenotype , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Protein Carbonylation/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Triticum/growth & development , Triticum/metabolism
12.
Cogn Neurodyn ; 9(4): 447-58, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26157517

ABSTRACT

In this paper, a nonlinear model for genetic regulator networks (GRNs) with SUM regulatory logic is presented. Four sufficient and necessary conditions of global asymptotical stability and global exponential stability for the equilibrium point of the GRNs are proposed, respectively. Specifically, three weak sufficient conditions and corresponding corollaries are derived by using comparing theorem and Dini derivative method. Then, a famous GRN model is used as the example to illustrate the effectiveness of our theoretical results. Comparing to the results in the previous literature, some novel ideas, study methods and interesting results are explored.

13.
PLoS One ; 10(4): e0124669, 2015.
Article in English | MEDLINE | ID: mdl-25909656

ABSTRACT

Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.


Subject(s)
Aldehyde Dehydrogenase/genetics , Multigene Family , Populus/genetics , Aldehyde Dehydrogenase/classification , Chromosome Mapping , Chromosomes, Plant , Cluster Analysis , Computational Biology , Databases, Nucleic Acid , Evolution, Molecular , Gene Duplication , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , Phylogeny , Populus/classification , Stress, Physiological/genetics
14.
PLoS One ; 10(4): e0123225, 2015.
Article in English | MEDLINE | ID: mdl-25867623

ABSTRACT

BACKGROUND: In plants, 14-3-3 proteins are encoded by a large multigene family and are involved in signaling pathways to regulate plant development and protection from stress. Although twelve Populus 14-3-3s were identified based on the Populus trichocarpa genome V1.1 in a previous study, no systematic analysis including genome organization, gene structure, duplication relationship, evolutionary analysis and expression compendium has been conducted in Populus based on the latest P. trichocarpa genome V3.0. PRINCIPAL FINDINGS: Here, a comprehensive analysis of Populus 14-3-3 family is presented. Two new 14-3-3 genes were identified based on the latest P. trichocarpa genome. In P. trichocarpa, fourteen 14-3-3 genes were grouped into ε and non-ε group. Exon-intron organizations of Populus 14-3-3s are highly conserved within the same group. Genomic organization analysis indicated that purifying selection plays a pivotal role in the retention and maintenance of Populus 14-3-3 family. Protein conformational analysis indicated that Populus 14-3-3 consists of a bundle of nine α-helices (α1-α9); the first four are essential for formation of the dimer, while α3, α5, α7, and α9 form a conserved peptide-binding groove. In addition, α1, α3, α5, α7, and α9 were evolving at a lower rate, while α2, α4, and α6 were evolving at a relatively faster rate. Microarray analyses showed that most Populus 14-3-3s are differentially expressed across tissues and upon exposure to various stresses. CONCLUSIONS: The gene structures and their coding protein structures of Populus 14-3-3s are highly conserved among group members, suggesting that members of the same group might also have conserved functions. Microarray and qRT-PCR analyses showed that most Populus 14-3-3s were differentially expressed in various tissues and were induced by various stresses. Our investigation provided a better understanding of the complexity of the 14-3-3 gene family in poplars.


Subject(s)
14-3-3 Proteins/genetics , Gene Expression Profiling , Genome-Wide Association Study , Populus/genetics , 14-3-3 Proteins/chemistry , Amino Acid Sequence , Chromosome Mapping , Chromosomes, Plant , Evolution, Molecular , Genes, Plant , Molecular Sequence Data , Phylogeny , Populus/classification , Sequence Homology, Amino Acid
15.
Plant Sci ; 226: 92-100, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25113454

ABSTRACT

The ubiquitin/26S proteasome system (Ub/26S) is implicated in abiotic stress responses in plants. In this paper, transgenic tobacco plants overexpressing Ta-Ub2 from wheat were used to study the functions of Ub in the improvement of photosynthesis under high temperature (45°C) stress. We observed higher levels of Ub conjugates in transgenic plants under high temperature stress conditions compared to wild type (WT) as a result of the constitutive overexpression of Ta-Ub2, suggesting increased protein degradation by the 26S proteasome system under high temperature stress. Overexpressing Ub increased the photosynthetic rate (Pn) of transgenic tobacco plants, consistent with the improved ATPase activity in the thylakoid membrane and enhanced efficiency of PSII photochemistry. The higher D1 protein levels following high temperature stress in transgenic plants than WT were also observed. These findings imply that Ub may be involved in tolerance of photosynthesis to high temperature stress in plants. Compared with WT, the transgenic plants showed lower protein carbonylation and malondialdehyde (MDA) levels, less reactive oxygen species (ROS) accumulation, but higher antioxidant enzyme activity under high temperature stress. These findings suggest that the improved antioxidant capacity of transgenic plants may be one of the most important mechanisms underlying Ub-regulated high temperature tolerance.


Subject(s)
Hot Temperature , Nicotiana/metabolism , Photosynthesis , Ubiquitin/metabolism , Electric Conductivity , Lipid Peroxidation , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Plants, Genetically Modified , Protein Carbonylation , Reactive Oxygen Species/metabolism , Stress, Physiological , Thylakoids/metabolism , Triticum/genetics , Ubiquitin/genetics
16.
J Exp Bot ; 64(6): 1509-20, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23378376

ABSTRACT

A wheat stay-green mutant, tasg1, was previously generated via mutation breeding of HS2, a common wheat cultivar (Triticum aestivum L.). Compared with wild-type (WT) plants, tasg1 exhibited delayed senescence indicated by the slower degradation of chlorophyll. In this study, the stability of proteins in thylakoid membranes was evaluated in tasg1 under drought stress compared with WT plants in the field as well as in seedlings in the laboratory. Drought stress was imposed by controlling irrigation and sheltering the plants from rain in the field, and by polyethylene glycol (PEG)-6000 in the laboratory. The results indicated that tasg1 plants could maintain higher Hill activity, actual efficiency (ΦPSII), maximal photochemical efficiency of PSII (Fv/Fm), and Ca(2+)-ATPase and Mg(2+)-ATPase activities than the WT plants under drought stress. Furthermore, the abundance of some polypeptides in thylakoid membranes of tasg1 was greater than that in the WT under drought stress. Expression levels of TaLhcb4 and TaLhcb6 were higher in tasg1 compared with the WT. Under drought stress, the accumulation of superoxide radical (O2·(-)) and hydrogen peroxide (H2O2) was lower in tasg1 compared with the WT not only at the senescence stage but also at the seedling stages. These results suggest greater functional stability of thylakoid membrane proteins in tasg1 compared with the WT, and the higher antioxidant competence of tasg1 may play an important role in the enhanced drought tolerance of tasg1.


Subject(s)
Antioxidants/metabolism , Droughts , Stress, Physiological , Thylakoid Membrane Proteins/metabolism , Thylakoids/physiology , Triticum/physiology , Adaptation, Physiological , Ca(2+) Mg(2+)-ATPase/metabolism , Calcium-Transporting ATPases/metabolism , Chlorophyll Binding Proteins/genetics , Chlorophyll Binding Proteins/metabolism , Enzyme Activation , Gene Expression Regulation, Plant , Genes, Plant , Genotype , Hydrogen Peroxide/metabolism , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism , Phenotype , Photosystem II Protein Complex/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Stability , Superoxides/metabolism , Thylakoid Membrane Proteins/genetics , Thylakoids/enzymology , Transcription, Genetic , Triticum/genetics , Water/metabolism
17.
Plant Cell Rep ; 31(6): 1073-84, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22262312

ABSTRACT

Wheat, which is the most important food crop worldwide, is a cereal that presents considerable potential for increased yield. A new wheat (Triticum aestivum L.) mutant tasg1 with delayed leaf senescence was constructed using ethyl methane sulfonate as a mutagen. Natural senescence in tasg1 was distinctly delayed in the field, as indicated by the slower progression of chlorophyll degradation, net photosynthetic rate than its wild type. Further, the malondialdehyde and the hydrogen peroxide content was lower and antioxidative enzyme activity higher in tasg1 than those in its wild type during both natural senescence and methyl viologen-induced oxidative stress. The results suggest that tasg1 is a functional stay-green wheat mutant with the Type B (in which senescence initiates on schedule, but progresses at a rate lower than that in the respective WTs) or Type A (in which senescence initiates late but proceeds at a normal rate) and B combination and that the competence of the antioxidant defense system is one of the most important mechanisms underlying the expression of the stay-green phenotype.


Subject(s)
Antioxidants/metabolism , Genes, Plant/genetics , Mutation/genetics , Triticum/growth & development , Triticum/immunology , Carbohydrate Metabolism/drug effects , Carbohydrate Metabolism/radiation effects , Carotenoids/metabolism , Chlorophyll/metabolism , Hydrogen Peroxide/pharmacology , Light , Malondialdehyde/metabolism , Paraquat/pharmacology , Phenotype , Photosynthesis/drug effects , Photosynthesis/radiation effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Solubility/drug effects , Solubility/radiation effects , Superoxide Dismutase/metabolism , Superoxides/metabolism , Triticum/enzymology , Triticum/genetics
18.
Ying Yong Sheng Tai Xue Bao ; 21(7): 1785-91, 2010 Jul.
Article in Chinese | MEDLINE | ID: mdl-20879538

ABSTRACT

A laboratory simulation test with slope-adjustable steel tank and artificial rainfall was conducted to study the runoff and sediment processes of uncovered and Poa pratensis L.-planted earth roads, and the anti-erosion effects of P. pratensis-planted earth road. At the same rainfall intensity and slope, the runoff coefficient of P. pratensis-planted earth road was larger than that of uncovered earth road. For the two kinds of earth roads, their runoff coefficients all increased with increasing rainfall intensity and slope. At the same slope but different rainfall intensity, the runoff coefficient had a logarithmic relationship with rainfall duration, and a quadratic relationship with slope or rainfall intensity. Soil erosion rate increased with increasing rainfall intensity or slope, and was smaller on the P. pratensis-planted earth road at the same rainfall intensity. The average antierosion efficacy of P. pratensis-planted earth road was 47.22% at different rainfall intensity, and was 26.24% at different slope. Because of its higher roughness and higher road surface resistance coefficient, P. pratensis-planted earth road had a lower sediment yield and a decreased sediment transport.


Subject(s)
Conservation of Natural Resources , Environmental Monitoring/methods , Poaceae/growth & development , Rain , Soil/analysis , China , Ecosystem , Geologic Sediments/analysis , Silicon Dioxide/analysis , Water/analysis , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...