Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 311: 122703, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39002516

ABSTRACT

An obstacle in current tumor immunotherapies lies in the challenge of achieving sustained and tumor-targeting T cell immunity, impeded by the limited antigen processing and cross-presentation of tumor antigens. Here, we propose a hydrogel-based multicellular immune factory within the body that autonomously converts tumor cells into an antitumor vaccine. Within the body, the scaffold, formed by a calcium-containing chitosan hydrogel complex (ChitoCa) entraps tumor cells and attracts immune cells to establish a durable and multicellular microenvironment. Within this context, tumor cells are completely eliminated by antigen-presenting cells (APCs) and processed for cross-antigen presentation. The regulatory mechanism relies on the Mincle receptor, a cell-phagocytosis-inducing C-type lectin receptor specifically activated on ChitoCa-recruited APCs, which serves as a recognition synapse, facilitating a tenfold increase in tumor cell engulfment and subsequent elimination. The ChitoCa-induced tumor cell processing further promotes the cross-presentation of tumor antigens to prime protective CD8+ T cell responses. Therefore, the ChitoCa treatment establishes an immune niche within the tumor microenvironment, resulting in effective tumor regression either used alone or in combination with other immunotherapies. This hydrogel-induced immune factory establishes a functional organ-like multicellular colony for tumor-specific immunotherapy, paving the way for innovative strategies in cancer treatment.

2.
Nanomaterials (Basel) ; 14(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38392750

ABSTRACT

Living organisms in nature, such as magnetotactic bacteria and eggs, generate various organic-inorganic hybrid materials, providing unique functionalities. Inspired by such natural hybrid materials, researchers can reasonably integrate biomaterials with living organisms either internally or externally to enhance their inherent capabilities and generate new functionalities. Currently, the approaches to enhancing organismal function through biomaterial intervention have undergone rapid development, progressing from the cellular level to the subcellular or multicellular level. In this review, we will concentrate on three key strategies related to biomaterial-guided bioenhancement, including biointerface engineering, artificial organelles, and 3D multicellular immune niches. For biointerface engineering, excess of amino acid residues on the surfaces of cells or viruses enables the assembly of materials to form versatile artificial shells, facilitating vaccine engineering and biological camouflage. Artificial organelles refer to artificial subcellular reactors made of biomaterials that persist in the cytoplasm, which imparts cells with on-demand regulatory ability. Moreover, macroscale biomaterials with spatiotemporal regulation characters enable the local recruitment and aggregation of cells, denoting multicellular niche to enhance crosstalk between cells and antigens. Collectively, harnessing the programmable chemical and biological attributes of biomaterials for organismal function enhancement shows significant potential in forthcoming biomedical applications.

3.
J Mater Chem B ; 11(45): 10923-10928, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37934507

ABSTRACT

The strategy of using tumor cells to construct whole-cell cancer vaccines has received widespread attention. However, the limited immunogenicity of inactivated tumor cells and the challenge of overcoming immune suppression in solid tumors have hindered the application of whole-cell-based cancer immune therapy. Inspired by the regulatory effects of MnO2 and spatiotemporal control capability of material layers in cell surface engineering, we developed a manganese (Mn)-mineralized tumor cell, B16F10@MnO2, by inactivating B16F10 melanoma cells with KMnO4 to generate manganese-mineralized tumor cells. The cell-based composite was formed by combining amorphous MnO2 with the membrane structure of cells based on the redox reaction between KMnO4 and tumor cells. The MnO2 layer induced a stronger phagocytosis of ovalbumin (OVA)-expressing tumor cells by antigen presenting cells than formaldehyde-fixed cells did, resulting in specific antigen-presentation in vitro and in vivo and subsequent immune responses. Intratumoral therapy with B16F10@MnO2 inhibited B16F10 tumor growth. Moreover, the infiltration of CD8+ T cells within B16F10 solid tumors and the proportion of central memory T cells both increased in B16F10@MnO2 treated tumor-bearing mice, indicating enhanced adaptive immunity. This study provides a convenient and effective method to improve whole-cell-based anti-tumor therapy.


Subject(s)
Cancer Vaccines , Melanoma, Experimental , Mice , Animals , CD8-Positive T-Lymphocytes , Manganese , Manganese Compounds/pharmacology , Melanoma, Experimental/therapy , Oxides/pharmacology , Immunotherapy/methods
4.
Nat Biomed Eng ; 7(7): 928-942, 2023 07.
Article in English | MEDLINE | ID: mdl-36959404

ABSTRACT

The threat of new viral outbreaks has heightened the need for ready-to-use vaccines that are safe and effective. Here we show that a subcutaneous vaccine consisting of live Zika virus electrostatically entrapped in a self-adjuvanting hydrogel recruited immune cells at the injection site and provided mice with effective protection against a lethal viral challenge. The hydrogel prevented the escape of the viral particles and upregulated pattern recognition receptors that activated innate antiviral immunity. The local inflammatory niche facilitated the engulfment of the virus by immune cells infiltrating the hydrogel, the processing and cross-presentation of antigens and the expansion of germinal centre B cells and induced robust antigen-specific adaptive responses and immune memory. Inflammatory immune niches entrapping live viruses may facilitate the rapid development of safe and efficacious vaccines.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Mice , Hydrogels , Antibodies, Viral , Immunization , Vaccination , Zika Virus Infection/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...