Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(48): 18999-19009, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37997954

ABSTRACT

Camellia sinensis contains numerous glycosylated secondary metabolites that provide various benefits to plants and humans. However, the genes that catalyze the glycosylation of multitype metabolites in tea plants remain unclear. Here, 180 uridine diphosphate-dependent glycosyltransferases that may be involved in the biosynthesis of glycosylated secondary metabolites were identified from the National Center for Biotechnology Information public databases. Subsequently, CsUGT74Y1 was screened through phylogenetic analysis and gene expression profiling. Compositional and induced expression analyses revealed that CsUGT74Y1 was highly expressed in tea tender shoots and was induced under biotic and abiotic stress conditions. In vitro enzymatic assays revealed that rCsUGT74Y1 encoded a multifunctional UGT that catalyzed the glycosylation of flavonoids, phenolic acids, lignins, and auxins. Furthermore, CsUGT74Y1-overexpressing Arabidopsis thaliana exhibited enhanced growth and accumulation of flavonol and auxin glucosides. Our findings provide insights into identifying specific UGTs and demonstrate that CsUGT74Y1 is a multifunctional UGT that promotes plant development.


Subject(s)
Camellia sinensis , Glycosyltransferases , Humans , Glycosylation , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Uridine Diphosphate/metabolism , Phylogeny , Plants/metabolism , Camellia sinensis/metabolism , Tea/metabolism
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 179: 194-200, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28242449

ABSTRACT

A novel adenine (Ad) fluorescence probe (EuIII-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the EuIII-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the EuIII-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the EuIII-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using EuIII-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of EuIII-dtpa-bis(guanine) at 570nm as a function of adenine (Ad) concentration in the range of 0.00-5.00×10-5molL-1 was observed. The detection limit is about 4.70×10-7molL-1.

3.
Int J Neurosci ; 126(7): 637-40, 2016.
Article in English | MEDLINE | ID: mdl-26000926

ABSTRACT

The C242T polymorphism of the CYBA gene that encodes p22phox, a component of nicotinamide adenine dinucleotide phosphate oxidase, has been found to modulate reactive oxygen species (ROS) production. Oxidative stress is thought to play a pivotal role in the pathophysiology of Alzheimer's disease (AD), which is manifested as increased availability of ROS because of an imbalanced redox state. Therefore, the aim of this study was to investigate potential associations of the p22phox C242T polymorphism with the risk of late-onset AD (LOAD) in a northern Han Chinese population. Patients with LOAD (n = 276) and 320 control subjects were recruited for the study. Polymerase chain reaction-restriction fragment length polymorphism was used to detect the genotypes. No significant differences were found between LOAD and p22phox C242T polymorphism, but a significant association was obtained in the genotype and allele distributions of p22phox C242T between LOAD patients and controls in apolipoprotein E (ApoE) ϵ4 carriers. These results suggested that p22phox C242T polymorphism has a possible role in changing the genetic susceptibility to LOAD in ApoE ϵ4 carriers of this northern Han Chinese population.


Subject(s)
Alzheimer Disease/genetics , NADPH Oxidases/genetics , Age of Onset , Aged , Aged, 80 and over , Female , Genetic Predisposition to Disease , Humans , Male , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...