Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(20): e2218425120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155848

ABSTRACT

Nucleic acid deformations play important roles in many biological processes. The physical understanding of nucleic acid deformation by environmental stimuli is limited due to the challenge in the precise measurement of RNA and DNA deformations and the complexity of interactions in RNA and DNA. Magnetic tweezers experiments provide an excellent opportunity to precisely measure DNA and RNA twist changes induced by environmental stimuli. In this work, we applied magnetic tweezers to measure double-stranded RNA twist changes induced by salt and temperature changes. We observed RNA unwinds when lowering salt concentration, or increasing temperature. Our molecular dynamics simulations revealed the mechanism: lowering salt concentration or increasing temperature enlarges RNA major groove width, which causes twist decrease through twist-groove coupling. Combining these results with previous results, we found some universality in RNA and DNA deformations induced by three different stimuli: salt change, temperature, and stretching force. For RNA, these stimuli first modify the major groove width, which is transduced into twist change through twist-groove coupling. For DNA, these stimuli first modify diameter, which is transduced into twist change through twist-diameter coupling. Twist-groove coupling and twist-diameter coupling appear to be utilized by protein binding to reduce DNA and RNA deformation energy cost upon protein binding.


Subject(s)
DNA , RNA, Double-Stranded , Nucleic Acid Conformation , Protein Binding , Temperature , DNA/chemistry , Sodium Chloride , Sodium Chloride, Dietary
2.
Biophys J ; 121(22): 4368-4381, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36199252

ABSTRACT

The antimicrobial peptide, melittin, is a potential next-generation antibiotic because melittin can spontaneously form pores in bacterial cell membranes and cause cytoplasm leakage. However, the organizations of melittin peptides in cell membranes remain elusive, which impedes the understanding of the poration mechanism. In this work, we use coarse-grained and all-atom molecular dynamics (MD) simulations to investigate the organizations of melittin peptides during and after spontaneous penetration into DPPC/POPG lipid bilayers. We find that the peptides in lipid bilayers adopt either a transmembrane conformation or a U-shaped conformation, which are referred to as T- and U-peptides, respectively. Several U-peptides and/or T-peptides aggregate to form stable pores. We analyze a T-pore consisting of four T-peptides and a U-pore consisting of three U-peptides and one T-peptide. In both pores, peptides are organized in a manner such that polar residues face inward and hydrophobic residues face outward, which stabilizes the pores and produces water channels. Compared with the U-pore, the T-pore has lower energy, larger pore diameter, and higher permeability. However, the T-pore occurs less frequently than the U-pore in our simulations, probably because the formation of the T-pore is kinetically slower than the U-pore. The stability and permeability of both pores are confirmed by 300 ns all-atom MD simulations. The peptide organizations obtained in this work should deepen the understanding of the stability, poration mechanism, and permeability of melittin, and facilitate the optimization of melittin to enhance the antibacterial ability.


Subject(s)
Lipid Bilayers , Melitten , Melitten/chemistry , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Peptides , Cell Membrane/metabolism
3.
J Phys Chem Lett ; 13(33): 7741-7748, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35969173

ABSTRACT

Extraordinarily stable protein and peptide structures are critically demanded in many applications. Typical approaches to enhance protein and peptide stability are strengthening certain interactions. Here, we develop a very different approach: stabilizing peptide structures through side-chain-locked knots. More specifically, a peptide core consists of a knot, which is prevented from unknotting and unfolding by large side chains of amino acids at knot boundaries. These side chains impose free energy barriers for unknotting. The free energy barriers are quantified using all-atom and coarse-grained simulations. The barriers become infinitely high for large side chains and tight knot cores, resulting in stable peptide structures, which never unfold unless one chemical bond is broken. The extraordinary stability is essentially kinetic stability. Our new approach lifts the thermodynamic restriction in designing peptide structures, provides extra freedom in selecting sequence and structural motifs that are thermodynamically unstable, and should expand the functionality of peptides. This work also provides a bottom-up understanding of how knotting enhances protein stability.


Subject(s)
Peptides , Proteins , Amino Acids/chemistry , Peptides/chemistry , Protein Stability , Proteins/chemistry , Thermodynamics
4.
Sci Adv ; 8(12): eabn1384, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35319990

ABSTRACT

DNA deformations upon environmental changes, e.g., salt and temperature, play crucial roles in many biological processes and material applications. Here, our magnetic tweezers experiments observed that the increase in NaCl, KCl, or RbCl concentration leads to substantial DNA overwinding. Our simulations and theoretical calculation quantitatively explain the salt-induced twist change through the mechanism: More salt enhances the screening of interstrand electrostatic repulsion and hence reduces DNA diameter, which is transduced to twist increase through twist-diameter coupling. We determined that the coupling constant is 4.5 ± 0.8 kBT/(degrees∙nm) for one base pair. The coupling comes from the restraint of the contour length of DNA backbone. On the basis of this coupling constant and diameter-dependent DNA conformational entropy, we predict the temperature dependence of DNA twist Δωbp/ΔT ≈ -0.01 degree/°C, which agrees with our and previous experimental results. Our analysis suggests that twist-diameter coupling is a common driving force for salt- and temperature-induced DNA twist changes.

5.
Phys Rev Lett ; 128(10): 108103, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35333091

ABSTRACT

When stretched, both DNA and RNA duplexes change their twist angles through twist-stretch coupling. The coupling is negative for DNA but positive for RNA, which is not yet completely understood. Here, our magnetic tweezers experiments show that the coupling of RNA reverses from positive to negative by multivalent cations. Combining with the previously reported tension-induced negative-to-positive coupling reversal of DNA, we propose a unified mechanism of the couplings of both RNA and DNA based on molecular dynamics simulations. Two deformation pathways are competing when stretched: shrinking the radius causes positive couplings but widening the major groove causes negative couplings. For RNA whose major groove is clamped by multivalent cations and canonical DNA, their radii shrink when stretched, thus exhibiting positive couplings. For elongated DNA whose radius already shrinks to the minimum and canonical RNA, their major grooves are widened when stretched, thus exhibiting negative couplings.


Subject(s)
DNA , RNA , Cations , DNA/metabolism , Molecular Dynamics Simulation , Nucleic Acid Conformation
6.
Phys Rev E ; 105(2-1): 024501, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35291068

ABSTRACT

Knots can spontaneously form in DNA, proteins, and other polymers and affect their properties. These knots often experience spatial confinement in biological systems and experiments. While confinement dramatically affects the knot behavior, the physical mechanisms underlying the confinement effects are not fully understood. In this work, we provide a simple physical picture of the polymer knots in slit confinement using the tube model. In the tube model, the polymer segments in the knot core are assumed to be confined in a virtual tube due to the topological restriction. We first perform Monte Carlo simulation of a flexible knotted chain confined in a slit. We find that with the decrease of the slit height from H=+∞ (the 3D case) to H=2a (the 2D case), the most probable knot size L_{knot}^{*} dramatically shrinks from (L_{knot}^{*})_{3D}≈140a to (L_{knot}^{*})_{2D}≈26a, where a is the monomer diameter of the flexible chain. Then we quantitatively explain the confinement-induced knot shrinking and knot deformation using the tube model. Our results for H=2a can be applied to a polymer knot on a surface, which resembles DNA knots measured by atomic force microscopy under the conditions that DNA molecules are weakly absorbed on the surface and reach equilibrium 2D conformations. This work demonstrates the effectiveness of the tube model in understanding polymer knots.

7.
Phys Rev E ; 104(5-1): 054502, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942690

ABSTRACT

In this work, we report an intriguing phenomenon: crowding-induced polymer trapping in a channel. Using Langevin dynamics simulations and analytical calculations, we find that for a polymer confined in a channel, crowding particles can push a polymer into the channel corner through inducing an effective polymer-corner attraction due to the depletion effect. This phenomenon is referred to as polymer trapping. The occurrence of polymer trapping requires a minimum volume fraction of crowders, ϕ^{*}, which scales as ϕ^{*}∼(a_{c}/L_{p})^{1/3} for a_{c}≫a_{m} and ϕ^{*}∼(a_{c}/L_{p})^{1/3}(a_{c}/a_{m})^{1/2} for a_{c}≪a_{m}, where a_{c} is the crowder diameter, a_{m} is the monomer diameter, and L_{p} is the polymer persistence length. For DNA, ϕ^{*} is estimated to be around 0.25 for crowders with a_{c}=2nm. We find that ϕ^{*} also strongly depends on the shape of the channel cross section, and ϕ^{*} is much smaller for a triangle channel than a square channel. The polymer trapping leads to a nearly fully stretched polymer conformation along a channel corner, which may have practical applications, such as full stretching of DNA for the nanochannel-based genome mapping technology.

8.
Langmuir ; 35(15): 5364-5371, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30888182

ABSTRACT

Pulmonary drug delivery is superior to the systemic administration in treating lung diseases. An optimal respiratory nanocarrier should be able to efficiently and safely cross the pulmonary surfactant film, which serves as the first biological barrier for respiratory delivery and plays paramount roles in maintaining the proper mechanics of breathing. In this work, we focused on the interactions between poly(amidoamine) (PAMAM) dendrimers and a model pulmonary surfactant. With combined Langmuir monolayer experiments and coarse-grained molecular dynamics simulations, we studied the effect of environmental temperature, size, and surface property of PAMAM dendrimers (G3-OH, G3-NH2, G5-OH, and G5-NH2) on the dipalmitoylphosphatidylcholine (DPPC) monolayer. Our simulations indicated that the environmental temperature could significantly affect the influence of PAMAM dendrimers on the DPPC monolayer. Therefore, results obtained at room temperature cannot be directly applied to elucidate interactions at body temperature. Simulations at body temperature found that all tested PAMAM dendrimers can easily penetrate the lipid monolayer during the monolayer expansion process (mimicking "inhalation"), and the cationic PAMAM dendrimers (-NH2) show promising penetration ability during the monolayer compression process (mimicking "expiration"). Larger PAMAM dendrimers (G5) adsorbed onto the lipid monolayer tend to induce structural collapse and inhibit normal phase transitions of the lipid monolayer. These adverse effects could be mitigated in the subsequent expansion-compression cycle. These findings suggest that the PAMAM dendrimer may be used as a potential respiratory drug nanocarrier.

SELECTION OF CITATIONS
SEARCH DETAIL
...