Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 51(4): 2563-2577, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37987563

ABSTRACT

OBJECTIVES: A circumferential resection margin (CRM) is an independent risk factor for local recurrence, distant metastasis, and poor overall survival of rectal cancer. In this study, we developed and validated a radiomics prediction model to predict perioperative surgical margins in patients with middle and low rectal cancer following neoadjuvant treatment and for decisions about treatment plans for patients. METHODS: This study retrospectively analyzed 275 patients from center 1(training cohort) and 120 patients from center 2(verification cohort) with rectal cancer diagnosed at two centers from July 2020 to July 2022 who underwent neoadjuvant therapy and had their CRM status confirmed by preoperative high-resolution magnetic resonance imaging (MRI) scans. Radiomics signatures were extracted and screened from MRI images and a radiomics signature was built by the least absolute shrinkage and selection operator (LASSO) logistic regression model, which was combined with clinical signatures to construct a nomogram. The receiver operating characteristic (ROC) curve and area under the curve (AUC) value, sensitivity, specificity, positive predictive value, negative predictive value, and calibration curve were used to evaluate the predictive performance of the model. RESULTS: In our research, the combined model has the best performance. In the training group, the radiomics model based on high-spatial-resolution T2-weighted imaging (HR-T2WI), clinical model and combined model demonstrated an AUC of 0.819 (0.802-0.833), 0.843 (0.822-0.861), and 0.910 (0.880-0.940), respectively. In the validation group, they demonstrated an AUC of 0.745 (0.715-0.788), 0.827 (0.798-0.850), and 0.848 (0.779-0.917), respectively. The calibration curve confirmed the clinical applicability of the model. CONCLUSIONS: The individualized prediction model established by combining radiomics signatures and clinical signatures can efficiently and objectively predict perioperative margin invasion in patients with middle and low rectal cancer.


Subject(s)
Margins of Excision , Rectal Neoplasms , Humans , Retrospective Studies , Radiomics , Magnetic Resonance Imaging/methods , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/surgery , Rectal Neoplasms/pathology
2.
Front Oncol ; 12: 925924, 2022.
Article in English | MEDLINE | ID: mdl-36518311

ABSTRACT

Background: In recent years, the rapid development of artificial intelligence (AI) technology has created a new diagnostic and therapeutic opportunity for colorectal cancer (CRC). Numerous academic and clinical studies have demonstrated that high-level auxiliary diagnosis and treatment systems based on AI technology can significantly improve the readability of medical data, objectively provide a reliable and comprehensive reference for physicians, reduce the experience gap between physicians, and aid physicians in making more accurate diagnosis decisions. In this study, we used bibliometric techniques to visually analyze the literature about AI in the CRC field and summarize the current situation and research hotspots in this field. Methods: The relevant literature on AI in the field of CRC research was obtained from the Web of Science Core Collection (WoSCC) database. The software CiteSpace was utilized to analyze the number of papers, countries, institutions, authors, journals, cited literature, and keywords of the included literature and generate a visual knowledge map. The present study aims to evaluate the origin, current hotspots, and research trends of AI in CRC using bibliometric analysis. Results: As of March 2022, 64 nations/regions, 230 institutions, 245 journals, and 300 authors had published 562 AI-related articles in the field of CRC. Since 2016, each year has seen an exponential increase. China and the United States were the largest contributors, with the largest number of beneficial research institutions and the closest collaboration relationship. The World Journal of Gastroenterology is this field's most widely published journal. Diagnosis and treatment research, gene and immunology research, intestinal polyp research, tumor grading research, gastrointestinal endoscopy research, and prognosis research comprised the six topics derived from high-frequency keyword cluster analysis. Conclusion: In recent years, field research has been a popular topic of discussion. The results of our bibliometric analysis allow us to comprehend better the current situation and trend of this research field, and the quantitative data indicators can serve as a guide for the research and application of global scholars.

3.
World J Surg Oncol ; 17(1): 12, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30621704

ABSTRACT

BACKGROUND: In this study, images of 2450 benign thyroid nodules and 2557 malignant thyroid nodules were collected and labeled, and an automatic image recognition and diagnosis system was established by deep learning using the YOLOv2 neural network. The performance of the system in the diagnosis of thyroid nodules was evaluated, and the application value of artificial intelligence in clinical practice was investigated. METHODS: The ultrasound images of 276 patients were retrospectively selected. The diagnoses of the radiologists were determined according to the Thyroid Imaging Reporting and Data System; the images were automatically recognized and diagnosed by the established artificial intelligence system. Pathological diagnosis was the gold standard for the final diagnosis. The performances of the established system and the radiologists in diagnosing the benign and malignant thyroid nodules were compared. RESULTS: The artificial intelligence diagnosis system correctly identified the lesion area, with an area under the receiver operating characteristic (ROC) curve of 0.902, which is higher than that of the radiologists (0.859). This finding indicates a higher diagnostic accuracy (p = 0.0434). The sensitivity, positive predictive value, negative predictive value, and accuracy of the artificial intelligence diagnosis system for the diagnosis of malignant thyroid nodules were 90.5%, 95.22%, 80.99%, and 90.31%, respectively, and the performance did not significantly differ from that of the radiologists (p > 0.05). The artificial intelligence diagnosis system had a higher specificity (89.91% vs 77.98%, p = 0.026). CONCLUSIONS: Compared with the performance of experienced radiologists, the artificial intelligence system has comparable sensitivity and accuracy for the diagnosis of malignant thyroid nodules and better diagnostic ability for benign thyroid nodules. As an auxiliary tool, this artificial intelligence diagnosis system can provide radiologists with sufficient assistance in the diagnosis of benign and malignant thyroid nodules.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Neural Networks, Computer , Thyroid Gland/diagnostic imaging , Thyroid Nodule/diagnostic imaging , Adult , Aged , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , ROC Curve , Retrospective Studies , Thyroid Gland/pathology , Thyroid Nodule/pathology , Ultrasonography/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...