Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Genet ; 13: 903185, 2022.
Article in English | MEDLINE | ID: mdl-35669182

ABSTRACT

The Asian swamp eel (Monopterus albus) is an excellent model species for studying sex change and chromosome evolution. M. albus is also widely reared in East Asia and South-East Asia because of its great nutritional value. The low fecundity of this species (about 300 eggs per fish) greatly hinders fries production and breeding programs. Interestingly, about 3-5% of the eels could remain as females for 3 years and lay more than 3,000 eggs per fish, which are referred to as non-sex-reversal (NSR) females. Here, we presented a new chromosome-level genome assembly of such NSR females using Illumina, HiFi, and Hi-C sequencing technologies. The new assembly (Mal.V2_NSR) is 838.39 Mb in length, and the N50 of the contigs is 49.8 Mb. Compared with the previous assembly obtained using the continuous long-read sequencing technology (Mal.V1_CLR), we found a remarkable increase of continuity in the new assembly Mal.V2_NSR with a 20-times longer contig N50. Chromosomes 2 and 12 were assembled into a single contig, respectively. Meanwhile, two highly contiguous haplotype assemblies were also obtained, with contig N50 being 14.54 and 12.13 Mb, respectively. BUSCO and Merqury analyses indicate completeness and high accuracy of these three assemblies. A comparative genomic analysis revealed substantial structural variations (SVs) between Mal.V2_NSR and Mal.V1_CLR and two phased haplotype assemblies, as well as whole chromosome fusion events when compared with the zig-zag eel. Additionally, our newly obtained assembly provides a genomic view of sex-related genes and a complete landscape of the MHC genes. Therefore, these high-quality genome assemblies would provide great help for future breeding works of the swamp eel, and it is a valuable new reference for genetic and genomic studies of this species.

2.
Sci Prog ; 104(3): 368504211035597, 2021.
Article in English | MEDLINE | ID: mdl-34375541

ABSTRACT

OBJECTIVES: Swamp eel is one model species for sexual reversion and an aquaculture fish in China. One local strain with deep yellow and big spots of Monopterus albus has been selected for consecutive selective breeding. The objectives of this study were characterizing the Simple Sequence Repeats (SSRs) of M. albus in the assembled genome obtained recently, and developing polymorphic SSRs for future breeding programs. METHODS: The genome wide SSRs were mined by using MISA software, and their types and genomic distribution patterns were investigated. Based on the available flanking sequences, primer pairs were batched developed, and Polymorphic SSRs were identified by using Polymorphic SSR Retrieval tool. The obtained polymorphic SSRs were validated by using e-PCR and capillary electrophoresis, then they were used to investigate genetic diversity of one breeding population. RESULTS: A total of 364,802 SSRs were identified in assembled M. albus genome. The total length, density and frequency of SSRs were 8,204,641 bp, 10,259 bp/Mb, and 456.16 loci/Mb, respectively. Mononucleotide repeats were predominant among SSRs (33.33%), and AC and AAT repeats were the most abundant di- and tri-nucleotide repeats motifs. A total of 287,189 primer pairs were designed, and a high-density physical map was constructed (359.11 markers per Mb). A total of 871 polymorphic SSRs were identified, and 38 SSRs of 101 randomly selected ones were validated by using e-PCR and capillary electrophoresis. Using these 38 polymorphic SSRs, 201 alleles were detected and genetic diversity level (Na, PIC, HO, and He) was evaluated. CONCLUSIONS: The genome-wide SSRs and newly developed SSR markers will provide a useful tool for genetic mapping, diversity analysis studies in swamp eel in the future. The high level of genetic diversity (Na = 5.29, PIC = 0.5068, HO = 0.4665, He = 0.5525) but excess of homozygotes (FIS = 0.155) in one breeding population provide baseline information for future breeding program.


Subject(s)
Smegmamorpha , Animals , Chromosome Mapping , Genome , Microsatellite Repeats/genetics , Polymerase Chain Reaction , Smegmamorpha/genetics
3.
G3 (Bethesda) ; 11(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33561235

ABSTRACT

The swamp eel (Monopterus albus) is one economically important fish in China and South-Eastern Asia and a good model species to study sex inversion. There are different genetic lineages and multiple local strains of swamp eel in China, and one local strain of M. albus with deep yellow and big spots has been selected for consecutive selective breeding due to superiority in growth rate and fecundity. A high-quality reference genome of the swamp eel would be a very useful resource for future selective breeding program. In the present study, we applied PacBio single-molecule sequencing technique (SMRT) and the high-throughput chromosome conformation capture (Hi-C) technologies to assemble the M. albus genome. A 799 Mb genome was obtained with the contig N50 length of 2.4 Mb and scaffold N50 length of 67.24 Mb, indicating 110-fold and ∼31.87-fold improvement compared to the earlier released assembly (∼22.24 Kb and 2.11 Mb, respectively). Aided with Hi-C data, a total of 750 contigs were reliably assembled into 12 chromosomes. Using 22,373 protein-coding genes annotated here, the phylogenetic relationships of the swamp eel with other teleosts showed that swamp eel separated from the common ancestor of Zig-zag eel ∼49.9 million years ago, and 769 gene families were found expanded, which are mainly enriched in the immune system, sensory system, and transport and catabolism. This highly accurate, chromosome-level reference genome of M. albus obtained in this work will be used for the development of genome-scale selective breeding.


Subject(s)
Smegmamorpha , Animals , China , Chromosomes , Genome , Humans , Phylogeny
4.
Infect Genet Evol ; 84: 104379, 2020 10.
Article in English | MEDLINE | ID: mdl-32497680

ABSTRACT

The Ranavirus (one genus of Iridovidae family) is an emerging pathogen that infects fish, amphibian, and reptiles, and causes great economical loss and ecological threat to farmed and wild animals globally. The major capsid protein (MCP) has been used as genetic typing marker and as target to design vaccines. Herein, the codon usage pattern of 73 MCP genes of Ranavirus and Lymphocystivirus are studied by calculating effective number of codons (ENC), relative synonymous codon usage (RSCU), codon adaptation index (CAI), and relative codon deoptimization index (RCDI), and similarity index (SiD). The Ranavirus are confirmed to be classified into five groups by using phylogenetic analysis, and varied nucleotide compositions and hierarchical cluster analysis based on RSCU. The results revealed different codon usage patterns among Lymphocystivirus and five groups of Ranavirus. Ranavirus had six over-represented codons ended with G/C nucleotide, while Lymphocystivirus had six over-represented codons ended with A/T nucleotide. A comparative analysis of parameters that define virus and host relatedness in terms of codon usage were analyzed indicated that Amphibian-like ranaviruses (ALRVs) seem to possess lower ENC values and higher CAIs in contrast to other ranaviruses isolated from fishes, and two groups (FV3-like and CMTV-like group) of them had received higher selection pressure from their hosts as having higher relative codon deoptimization index (RCDI) and similarity index (SiD). The correspondence analysis (COA) and Spearman's rank correlation analyses revealed that nucleotide compositions, relative dinucleotide frequency, mutation pressure, and natural translational selection shape the codon usage pattern in MCP genes and the ENC-GC3S and neutrality plots indicated that the natural selection is the predominant factor. These results contribute to understanding the evolution of Ranavirus and their adaptions to their hosts.


Subject(s)
Capsid Proteins/metabolism , Gene Expression Regulation, Viral/physiology , Iridoviridae/metabolism , Ranavirus/metabolism , Capsid Proteins/genetics , Codon Usage , Evolution, Molecular , Iridoviridae/genetics , Phylogeny , Ranavirus/genetics
5.
BMC Genomics ; 21(1): 269, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32228450

ABSTRACT

BACKGROUND: The nucleoli, including their proteomes, of higher eukaryotes have been extensively studied, while few studies about the nucleoli of the lower eukaryotes - protists were reported. Giardia lamblia, a protist with the controversy of whether it is an extreme primitive eukaryote or just a highly evolved parasite, might be an interesting object for carrying out the nucleolar proteome study of protists and for further examining the controversy. RESULTS: Using bioinformatics methods, we reconstructed G. lamblia nucleolar proteome (GiNuP) and the common nucleolar proteome of the three representative higher eukaryotes (human, Arabidopsis, yeast) (HEBNuP). Comparisons of the two proteomes revealed that: 1) GiNuP is much smaller than HEBNuP, but 78.4% of its proteins have orthologs in the latter; 2) More than 68% of the GiNuP proteins are involved in the "Ribosome related" function, and the others participate in the other functions, and these two groups of proteins are much larger and much smaller than those in HEBNuP, respectively; 3) Both GiNuP and HEBNuP have their own specific proteins, but HEBNuP has a much higher proportion of such proteins to participate in more categories of nucleolar functions. CONCLUSION: For the first time the nucleolar proteome of a protist - Giardia was reconstructed. The results of comparison of it with the common proteome of three representative higher eukaryotes -- HEBNuP indicated that the simplicity of GiNuP is most probably a reflection of primitiveness but not just parasitic reduction of Giardia, and simultaneously revealed some interesting evolutionary phenomena about the nucleolus and even the eukaryotic cell, compositionally and functionally.


Subject(s)
Giardia lamblia/metabolism , Proteome/metabolism , Animals , Biological Evolution , Evolution, Molecular , Giardia lamblia/genetics , Humans , Proteome/genetics
6.
Biol Open ; 7(11)2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30425109

ABSTRACT

Animal egg coats are composed of different glycoproteins collectively named zona pellucida (ZP) proteins. The characterized vertebrate genes encoding ZP proteins have been classified into six subfamilies, and exhibit low similarity to the ZP genes characterized in certain invertebrates. The origin and evolution of the vertebrate ZP genes remain obscure. A search against 97 representative metazoan species revealed various numbers (ranging from three to 33) of different putative egg-coat ZP genes in all 47 vertebrates and several ZP genes in five invertebrate species, but no putative ZP gene was found in the other 45 species. Based on phylogenetic and synteny analyses, all vertebrate egg-coat ZP genes were classified into eight ZP gene subfamilies. Lineage- and species-specific gene duplications and gene losses occurred frequently and represented the main causes of the patchy distribution of the eight ZP gene subfamilies in vertebrates. Thorough phylogenetic analyses revealed that the vertebrate ZP genes could be traced to three independent origins but were not orthologues of the characterized invertebrate ZP genes. Our results suggested that vertebrate egg-coat ZP genes should be classified into eight subfamilies, and a putative evolutionary map is proposed. These findings would aid the functional and evolutionary analyses of these reproductive genes in vertebrates.

7.
Genome Biol Evol ; 5(12): 2255-67, 2013.
Article in English | MEDLINE | ID: mdl-24214024

ABSTRACT

As a nucleolar complex for small-subunit (SSU) ribosomal RNA processing, SSU processome has been extensively studied mainly in Saccharomyces cerevisiae but not in diverse organisms, leaving open the question of whether it is a ubiquitous mechanism across eukaryotes and how it evolved in the course of the evolution of eukaryotes. Genome-wide survey and identification of SSU processome components showed that the majority of all 77 yeast SSU processome proteins possess homologs in almost all of the main eukaryotic lineages, and 14 of them have homologs in archaea but few in bacteria, suggesting that the complex is ubiquitous in eukaryotes, and its evolutionary history began with abundant protein homologs being present in archaea and then a fairly complete form of the complex emerged in the last eukaryotic common ancestor (LECA). Phylogenetic analysis indicated that ancient gene duplication and functional divergence of the protein components of the complex occurred frequently during the evolutionary origin of the LECA from prokaryotes. We found that such duplications not only increased the complex's components but also produced some new functional proteins involved in other nucleolar functions, such as ribosome biogenesis and even some nonnucleolar (but nuclear) proteins participating in pre-mRNA splicing, implying the evolutionary emergence of the subnuclear compartment-the nucleolus-has occurred in the LECA. Therefore, the LECA harbored not only complicated SSU processomes but also a nucleolus. Our analysis also revealed that gene duplication, innovation, and loss, caused further divergence of the complex during the divergence of eukaryotes.


Subject(s)
Eukaryota/genetics , Nucleolus Organizer Region/genetics , Ribosome Subunits, Small, Eukaryotic/genetics , Base Sequence , Biological Evolution , Databases, Nucleic Acid , Eukaryotic Cells/cytology , Evolution, Molecular , Nuclear Proteins/genetics , Phylogeny , RNA Splicing/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal, 18S/genetics , Ribosomal Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment
8.
BMC Evol Biol ; 12: 32, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22409430

ABSTRACT

BACKGROUND: Cardiolipin (CL) is an important component in mitochondrial inner and bacterial membranes. Its appearance in these two biomembranes has been considered as evidence of the endosymbiotic origin of mitochondria. But CL was reported to be synthesized through two distinct enzymes--CLS_cap and CLS_pld in eukaryotes and bacteria. Therefore, how the CL biosynthesis pathway evolved is an interesting question. RESULTS: Phylogenetic distribution investigation of CL synthase (CLS) showed: most bacteria have CLS_pld pathway, but in partial bacteria including proteobacteria and actinobacteria CLS_cap pathway has already appeared; in eukaryotes, Supergroup Opisthokonta and Archaeplastida, and Subgroup Stramenopiles, which all contain multicellular organisms, possess CLS_cap pathway, while Supergroup Amoebozoa and Excavata and Subgroup Alveolata, which all consist exclusively of unicellular eukaryotes, bear CLS_pld pathway; amitochondriate protists in any supergroups have neither. Phylogenetic analysis indicated the CLS_cap in eukaryotes have the closest relationship with those of alpha proteobacteria, while the CLS_pld in eukaryotes share a common ancestor but have no close correlation with those of any particular bacteria. CONCLUSIONS: The first eukaryote common ancestor (FECA) inherited the CLS_pld from its bacterial ancestor (e. g. the bacterial partner according to any of the hypotheses about eukaryote evolution); later, when the FECA evolved into the last eukaryote common ancestor (LECA), the endosymbiotic mitochondria (alpha proteobacteria) brought in CLS_cap, and then in some LECA individuals the CLS_cap substituted the CLS_pld, and these LECAs would evolve into the protist lineages from which multicellular eukaryotes could arise, while in the other LECAs the CLS_pld was retained and the CLS_cap was lost, and these LECAs would evolve into the protist lineages possessing CLS_pld. Besides, our work indicated CL maturation pathway arose after the emergence of eukaryotes probably through mechanisms such as duplication of other genes, and gene duplication and loss occurred frequently at different lineage levels, increasing the pathway diversity probably to fit the complicated cellular process in various cells. Our work also implies the classification putting Stramenopiles and Alveolata together to form Chromalveolata may be unreasonable; the absence of CL synthesis and maturation pathways in amitochondriate protists is most probably due to secondary loss.


Subject(s)
Biosynthetic Pathways/physiology , Cardiolipins/biosynthesis , Cardiolipins/metabolism , Eukaryota/enzymology , Evolution, Molecular , Membrane Proteins/physiology , Phylogeny , Transferases (Other Substituted Phosphate Groups)/physiology , Base Sequence , Bayes Theorem , Eukaryota/genetics , Eukaryota/metabolism , Likelihood Functions , Membrane Proteins/metabolism , Models, Genetic , Molecular Sequence Data , Phospholipases A2, Calcium-Independent/genetics , Phospholipases A2, Calcium-Independent/metabolism , Sequence Analysis, DNA , Species Specificity , Transferases (Other Substituted Phosphate Groups)/metabolism
9.
J Virol ; 86(2): 972-81, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22090114

ABSTRACT

Despite the worldwide distribution, most of the known Seoul viruses (SEOV) are closely related to each other. In this study, the M and the S segment sequences of SEOV were recovered from 130 lung tissue samples (mostly of Norway rats) and from six patient serum samples by reverse transcription-PCR. Genetic analysis revealed that all sequences belong to SEOV and represent 136 novel strains. Phylogenetic analysis of all available M and S segment sequences of SEOV, including 136 novel Chinese strains, revealed four distinct groups. All non-Chinese SEOV strains and most of the Chinese variants fell into the phylogroup A, while the Chinese strains originating from mountainous areas clustered into three other distinct groups (B, C, and D). We estimated that phylogroup A viruses may have arisen only within the last several centuries. All non-Chinese variants appeared to be directly originated from China. Thus, phylogroup A viruses distributed worldwide may share a recent ancestor, whereas SEOV seems to be as diversified genetically as other hantaviruses. In addition, all available mitochondrial DNA (mtDNA) sequences of Norway rats, including our 44 newly recovered mtDNA sequences, were divided into two phylogenetic groups. The first group, which is associated with the group A SEOV variants, included most of rats from China and also all non-Chinese rats, while the second group consisted of a few rats originating only from mountain areas in China. We hypothesize that an ancestor of phylogroup A SEOV variants was first exported from China to Europe and then spread through the New World following the migration of Norway rats.


Subject(s)
Animal Migration , Disease Reservoirs/virology , Hemorrhagic Fever with Renal Syndrome/virology , Rats/virology , Seoul virus/isolation & purification , Animals , Disease Reservoirs/classification , Humans , Molecular Sequence Data , Phylogeny , Phylogeography , Rats/classification , Rats/physiology , Seoul virus/classification , Seoul virus/genetics , Viral Proteins/genetics
10.
Dongwuxue Yanjiu ; 31(1): 35-8, 2010 Feb.
Article in Chinese | MEDLINE | ID: mdl-20446451

ABSTRACT

Eukaryotic mitochondrion generally possess a definite and canonical structure and function. However, in the unicellular parasitic protozoa, various atypical mitochondria with respect to the number, structure, and function, have been discovered consecutively, revealing the variability, plasticity and rich diversity of mitochondrion. Here, we review the mitochondrial diversity in diverse parasitic protozoa, and the underlying reason for such diversity--the adaptive evolution of mitochondrion to the micro-oxygen or anaero parasitic environment of these parasites is also analyzed and discussed.


Subject(s)
Adaptation, Biological , Biological Evolution , Euglenozoa/metabolism , Mitochondria/metabolism , Parasites/metabolism , Animals , Euglenozoa/genetics , Mitochondria/genetics , Parasites/genetics
11.
Infect Disord Drug Targets ; 10(4): 295-302, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20429862

ABSTRACT

Giardiasis is a worldwide parasitic disease caused by the protozoan Giardia lamblia in humans and other animals, especially live stocks. Here, we briefly review the current state of therapeutic availability for giardiasis, including chemical drugs and vaccines, and the dilemma in the prevention and treatment of this disease, including the emergence of drug resistance and the shortage of vaccine (especially for humans). Future efforts and progress in controlling giardiasis are expected in three aspects: clarification of the drug resistance mechanisms, development of efficient vaccines, and identification of more targets for new drugs and vaccines.


Subject(s)
Giardia lamblia , Giardiasis/drug therapy , Animals , Antiprotozoal Agents/therapeutic use , Drug Discovery , Drug Resistance , Giardia lamblia/drug effects , Giardia lamblia/metabolism , Giardiasis/parasitology , Giardiasis/prevention & control , Humans , Protozoan Vaccines/pharmacology
12.
Comput Biol Chem ; 33(5): 391-6, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19716768

ABSTRACT

Using a combined computational program, we identified 50 potential microRNAs (miRNAs) in Giardia lamblia, one of the most primitive unicellular eukaryotes. These miRNAs are unique to G. lamblia and no homologues have been found in other organisms; miRNAs, currently known in other species, were not found in G. lamblia. This suggests that miRNA biogenesis and miRNA-mediated gene regulation pathway may evolve independently, especially in evolutionarily distant lineages. A majority (43) of the predicted miRNAs are located at one single locus; however, some miRNAs have two or more copies in the genome. Among the 58 miRNA genes, 28 are located in the intergenic regions whereas 30 are present in the anti-sense strands of the protein-coding sequences. Five predicted miRNAs are expressed in G. lamblia trophozoite cells evidenced by expressed sequence tags or RT-PCR. Thirty-seven identified miRNAs may target 50 protein-coding genes, including seven variant-specific surface proteins (VSPs). Our findings provide a clue that miRNA-mediated gene regulation may exist in the early stage of eukaryotic evolution, suggesting that it is an important regulation system ubiquitous in eukaryotes.


Subject(s)
Computer Simulation , Genome , Giardia lamblia/genetics , MicroRNAs/genetics , Models, Genetic , Computational Biology , Databases, Genetic
13.
BMC Evol Biol ; 9: 137, 2009 Jun 18.
Article in English | MEDLINE | ID: mdl-19534824

ABSTRACT

BACKGROUND: YidC/Oxa/Alb3 family includes a group of conserved translocases that are essential for protein insertion into inner membranes of bacteria and mitochondria, and thylakoid membranes of chloroplasts. Because mitochondria and chloroplasts are of bacterial origin, Oxa and Alb3, like many other mitochondrial/chloroplastic proteins, are hypothetically derived from the pre-existing protein (YidC) of bacterial endosymbionts. Here, we test this hypothesis and investigate the evolutionary history of the whole YidC/Oxa/Alb3 family in the three domains of life. RESULTS: Our comprehensive analyses of the phylogenetic distribution and phylogeny of the YidC/Oxa/Alb3 family lead to the following findings: 1) In archaea, YidC homologs are only sporadically distributed in Euryarchaeota; 2) Most bacteria contain only one YidC gene copy; some species in a few taxa (Bacillus, Lactobacillales, Actinobacteria and Clostridia) have two gene copies; 3) Eukaryotic Oxa and Alb3 have two separate prokaryotic origins, but they might not arise directly from the YidC of proteobacteria and cyanobacteria through the endosymbiosis origins of mitochondrium and chloroplast, respectively; 4) An ancient duplication occurred on both Oxa and Alb3 immediately after their origins, and thus most eukaryotes generally bear two Oxa and two Alb3. However, secondary loss, duplication or acquisition of new domain also occurred on the two genes in some lineages, especially in protists, resulting in a rich diversity or adaptive differentiation of the two translocases in these lineages. CONCLUSION: YidC is distributed in bacteria and some Euryarchaeota. Although mitochondrial Oxa and chloroplastic Alb3 are derived from the prokaryotic YidC, their origin might be not related to the endosymbiosis events of the two organelles. In some eukaryotic lineages, especially in protists, Oxa and Alb3 have diverse evolutionary histories. Finally, a model for the evolutionary history of the entire YidC/Oxa/Alb3 family in the three domains of life is proposed.


Subject(s)
Evolution, Molecular , Membrane Transport Proteins/genetics , Phylogeny , Algal Proteins/genetics , Animals , Archaeal Proteins/genetics , Bacterial Proteins/genetics , Humans , Likelihood Functions , Mitochondrial Proteins/genetics , Plant Proteins/genetics , Protozoan Proteins/genetics , Sequence Alignment , Thylakoids/genetics
14.
Gene ; 396(1): 116-24, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17449198

ABSTRACT

Ras superfamily proteins are key regulators in a wide variety of cellular processes. Previously, they were considered to be specific to eukaryotes, and MglA, a group of obviously different prokaryotic proteins, were recognized as their only prokaryotic analogs or even ancestors. Here, taking advantage of quite a current accumulation of prokaryotic genomic databases, we have investigated the existence and taxonomic distribution of Ras superfamily protein homologs in a much wider prokaryotic range, and analyzed their phylogenetic correlation with their eukaryotic analogs. Thirteen unambiguous prokaryotic homologs, which possess the GDP/GTP-binding domain with all the five characteristic motifs of their eukaryotic analogs, were identified in 12 eubacteria and one archaebacterium, respectively. In some other archaebacteria, including four methanogenic archaebacteria and three Thermoplasmales, homologs were also found, but with the GDP/GTP-binding domains not containing all the five characteristic motifs. Many more MglA orthologs were identified than in previous studies mainly in delta-proteobacteria, and all were shown to have common unique features distinct from the Ras superfamily proteins. Our phylogenetic analysis indicated eukaryotic Rab, Ran, Ras, and Rho families have the closest phylogenetic correlation with the 13 unambiguous prokaryotic homologs, whereas the other three eukaryotic protein families (SRbeta, Sar1, and Arf) branch separately from them, but have a relatively close relationship with the methanogenic archaebacterial homologs and MglA. Although homologs were identified in a relative minority of prokaryotes with genomic databases, their presence in a relatively wide variety of lineages, their unique sequence characters distinct from those of eukaryotic analogs, and the topology of our phylogenetic tree altogether do not support their origin from eukaryotes as a result of lateral gene transfer. Therefore, we argue that Ras superfamily proteins might have already emerged at least in some prokaryotic lineages, and that the seven eukaryotic protein families of the Ras superfamily may have two independent prokaryotic origins, probably reflecting the 'fusion' evolutionary history of the eukaryotic cell.


Subject(s)
Eukaryotic Cells/chemistry , Multigene Family , Phylogeny , Prokaryotic Cells/chemistry , Sequence Homology, Amino Acid , ras Proteins/chemistry , Amino Acid Sequence , Likelihood Functions , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...