Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(7): eadd6950, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36791203

ABSTRACT

Ion-conductive hydrogels, with ions as signal carriers, have become promising candidates to construct functional ionotronics for sensing, actuating, and robotics engineering. However, rational modulation of ionic migration to mimic biological information processing, including learning and memory, remains challenging to be realized in hydrogel materials. Here, we develop a hybrid hydrogel with optically modulated ionic conductivity to emulate the functions of a biological synapse. Through a responsive supramolecular approach, optical stimuli can trigger the release of mobile ions for tuning the conductivity of the hydrogel, which is analogous to the modulation of synaptic plasticity. As a proof of concept, this hydrogel can be used as an information processing unit to perceive different optical stimuli and regulate the grasping motion of a robotic hand, performing logical motion feedback with "learning-experience" function. Our ionic hydrogel provides a valuable strategy toward developing bioinspired ionotronic systems and pushes forward the functional applications of hydrogel materials.

2.
ACS Appl Mater Interfaces ; 15(3): 4458-4468, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36629334

ABSTRACT

Touch panels based on ionic conductive hydrogels perform excellent flexibility and biocompatibility, becoming promising candidates for the next-generation human-machine interface. However, these ionic hydrogels are usually composed of cross-linked polymeric networks that are difficult to be recycled or reconfigured, resulting in environmental issues. Herein, we designed a lithium ion-triggered gelation strategy to provide a conductive molecular hydrogel with thixotropy, which can be mechanically recycled or reconfigured at room temperature. In this hydrogel, lithium ions function as ionic bridges to construct supramolecular nanoassemblies and charge carriers to impart ionic conductivity. With polymer additives, the mechanical accommodability of the hydrogel was improved to meet the requirements of the daily use of touch panels. When this molecular hydrogel was fabricated into a surface capacitive touch panel, real-time sensing and reliable touch locating abilities were achieved. Remarkably, this touch panel can be reconfigured into 1D, 2D, and 3D device structures by a simple stirring-remolding method under ambient conditions. This work brings new insight into enriching the functionalities of hydrogel-based ionotronics with a supramolecular approach.

3.
Chem Commun (Camb) ; 53(38): 5326-5329, 2017 May 09.
Article in English | MEDLINE | ID: mdl-28447692

ABSTRACT

We report a quantitative synthetic strategy of a [1]rotaxane from a representative pseudo[1]rotaxane. The structure of the [1]rotaxane was characterized by 1H NMR, 13C NMR, 2D NMR, mass spectroscopy, and melting point, and its optimized geometry in CHCl3 by theoretical calculation at the B3LYP/6-31G(D) level using the PCM model matched well with 2D NOESY. This [1]rotaxane proves to be a good catalyst for the Knoevenagel reaction in CHCl3, which follows second order kinetics.

SELECTION OF CITATIONS
SEARCH DETAIL
...