Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 854116, 2022.
Article in English | MEDLINE | ID: mdl-35574092

ABSTRACT

As the area of salinized soils increases, and freshwater becomes more scarcer worldwide, an urgent measure for agricultural production is to use salinized land and conserve freshwater resources. Ornamental flowering plants, such as carnations, roses, chrysanthemums, and gerberas, are found around the world and have high economic, ornamental, ecological, and edible value. It is therefore prudent to improve the salt tolerance of these important horticultural crops. Here, we summarize the salt-adaptive mechanisms, genes, and molecular breeding of ornamental flowering crops. We also review the genome editing technologies that provide us with the means to obtain novel varieties with high salinity tolerance and improved utility value, and discuss future directions of research into ornamental plants like salt exclusion mechanism. We considered that the salt exclusion mechanism in ornamental flowering plants, the acquisition of flowers with high quality and novel color under salinity condition through gene editing techniques should be focused on for the future research.

2.
Int J Mol Sci ; 22(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066424

ABSTRACT

Named for the characteristic basic helix-loop-helix (bHLH) region in their protein structure, bHLH proteins are a widespread transcription factor class in eukaryotes. bHLHs transcriptionally regulate their target genes by binding to specific positions on their promoters and thereby direct a variety of plant developmental and metabolic processes, such as photomorphogenesis, flowering induction, shade avoidance, and secondary metabolite biosynthesis, which are important for promoting plant tolerance or adaptation to adverse environments. In this review, we discuss the vital roles of bHLHs in plant responses to abiotic stresses, such as drought, salinity, cold, and iron deficiency. We suggest directions for future studies into the roles of bHLH genes in plant and discuss their potential applications in crop breeding.


Subject(s)
Adaptation, Physiological , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plants/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Models, Biological , Plant Development/genetics , Plants/genetics , Stress, Physiological/genetics
3.
Front Plant Sci ; 11: 602427, 2020.
Article in English | MEDLINE | ID: mdl-33381136

ABSTRACT

Salinity inhibits plant growth due to salt ion accumulation in plant cells and reduced absorption of other nutrients such as metal ions; however halophyte plants have evolved mechanisms to survive and thrive in high-salt conditions. The euhalophyte Suaeda salsa generates dimorphic seeds (black and brown), which show marked differences in germination and seedling growth under high-salt conditions. However, it is unclear whether their ionic status differs. Here, to provide insight on the role of ions in salt tolerance, we used inductively coupled plasma mass spectrometry to measure the ion contents in the dimorphic seeds from S. salsa plants treated with or without NaCl. We measured the macroelements Na, K, Mg, and Ca, and the microelements Mn, Fe, Zn, Cu, and Mo. NaCl-treated S. salsa plants produced seeds with significantly reduced metallic element contents and significantly increased Na+ contents. The brown seeds of S. salsa plants treated with 0 and 200 mM NaCl had much higher contents of K+, Ca2+, and Fe2+ compared with the black seeds. However, the S. salsa seeds (both black and brown) from NaCl-treated plants were significantly larger, and had higher germination rate and higher seedling salt tolerance compared with seeds from plants not treated with NaCl. Interestingly, we measured significantly higher Zn2+ contents in the brown seeds from plants treated with NaCl compared with the black seeds. This suggests that the high contents of Zn2+ and other cations affected seed development and salt tolerance during germination under high-salt conditions. These observations provide insight into the mechanisms of salt tolerance in this halophyte and inform efforts to increase salt tolerance in salt-sensitive species.

4.
Front Plant Sci ; 11: 1291, 2020.
Article in English | MEDLINE | ID: mdl-32973849

ABSTRACT

Irrigation with 200 mM NaCl significantly increases vegetative and reproductive growth of the extreme halophyte Suaeda salsa. However, little is known about how the progeny of S. salsa plants grown under a continuous NaCl supply behave in terms of growth and seed set parameters. We investigated various plant growth and reproductive parameters of the progeny that germinated from seeds harvested from mother plants grown under 0 or 200 mM NaCl over three generations. Seedling emergence, plant height, stem diameter, total branch length, flowering branch length, flowering branch ratio, and seed production were all significantly enhanced in the progeny produced by mother plants grown with 200 mM NaCl compared to progeny of mother plants grown on low salinity conditions. Therefore, irrigation with 200 mM of NaCl is beneficial to seed development in the halophyte S. salsa and possibly contributes to population establishment in high salinity environments. Likewise, the prolonged absence of NaCl in the growth environment inhibits seed development, results in lower seed quality, and thus limits seedling growth of the progeny, thereby restricting S. salsa to a high salinity ecological niche.

SELECTION OF CITATIONS
SEARCH DETAIL
...