Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cereb Blood Flow Metab ; 29(7): 1305-16, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19436315

ABSTRACT

We report a new clinically relevant model of neonatal hypoxic-ischemic injury in a 10-day-old rat pup. Bilateral carotid artery occlusion and 8% hypoxia (1 to 15 mins, BCAO-H) was induced with varying degrees of injury (mild, moderate, severe), which was quantified using magnetic resonance imaging including diffusion-weighted and T2-weighted imaging at 24 h and 21/28 days. We developed a magnetic resonance imaging-based rat pup severity score and compared 3D ischemic injury volumes/rat pup severity score with histology and behavioral testing. At 24 h, hypoxic-ischemic injury was observed in 17/27 animals; long-term survival was 81%. Magnetic resonance imaging lesion volumes did not correlate with hypoxia duration but correlated with rat pup severity score, which was used to classify animals into mild (n=21), moderate (n=6), and severe (n=10) groups with average brain lesion volumes of 0.9%, 33.2%, and 56.3%, respectively. Histology confirmed lesion location and histologic scoring correlated with the rat pup severity score. We also found excellent correlation between injury severity and multiple behavioral tasks. Bilateral carotid artery occlusion and hypoxia in the P10 rat pup is an excellent model of neonatal hypoxic-ischemic injury because it induces diffuse global injury similar to the term infant. This model can produce graded injury severity, similar to that seen in human neonates, but manipulation with hypoxia duration is unpredictable.


Subject(s)
Carotid Artery Diseases/pathology , Disease Models, Animal , Hypoxia-Ischemia, Brain/pathology , Animals , Animals, Newborn , Humans , Hypoxia , Magnetic Resonance Imaging , Rats , Severity of Illness Index , Survival Rate , Time Factors
2.
Pediatr Res ; 61(1): 9-14, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17211133

ABSTRACT

Using an 11.7-Tesla magnetic resonance imaging (MRI) scanner in 10-d-old rat pups we report on the evolution of injury over 28 d in a model of neonatal stroke (transient filament middle cerebral artery occlusion, tfMCAO) and a model of hypoxic-ischemic injury (Rice-Vannucci model, RVM). In both models, diffusion-weighted imaging (DWI) was more sensitive in the early detection of ischemia than T2-weighted imaging (T2WI). Injury volumes in both models were greater on d 1 for DWI and d 3 for T2WI, decreased over time and by d 28 T2WI injury volumes (tfMCAO 10.3% of ipsilateral hemisphere; RVM 23.9%) were definable. The distribution of injury with tfMCAO was confined to the vascular territory of the middle cerebral artery and a definable core and penumbra evolved over time. Ischemic injury in the RVM was more generalized and greater in cortical regions. Contralateral hemispheric involvement was only observed in the RVM. Our findings demonstrate that high-field MRI over extended periods of time is possible in a small animal model of neonatal brain injury and that the tfMCAO model should be used for studies of neonatal stroke and that the RVM does not reflect the vascular distribution of injury seen with focal ischemia.


Subject(s)
Disease Models, Animal , Hypoxia-Ischemia, Brain/physiopathology , Magnetic Resonance Imaging , Stroke/physiopathology , Animals , Animals, Newborn , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...