Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Sci Total Environ ; 931: 172768, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38670359

ABSTRACT

The accumulation of contaminants like PAHs in soil due to industrialization, urbanization, and intensified agriculture poses environmental challenges, owing to their persistence, hydrophobic nature, and toxicity. Thus, the degradation of PAHs has attracted worldwide attention in soil remediation. This study explored the effect of noble metal and temperature on the degradation of various polycyclic aromatic hydrocarbons (PAHs) in soil, as well as the types of reactive radicals generated and mechanism. The Fe-Pd/AC and Fe-Pt/AC activated persulfate exhibited high removal efficiency of 19 kinds of PAHs, about 79.95 % and 83.36 %, respectively. Fe-Pt/AC-activated persulfate exhibits superior degradation efficiency than that on Fe-Pd/AC-activated persulfate, due to the higher specific surface area and dispersity of Pt particles, thereby resulting in increased reactive radicals (·OH, SO4-· and ·OOH). Additionally, thermal activation enhances the degradation of PAHs, with initial efficiencies of 64.20 % and 55.49 % on Fe-Pd/AC- and Fe-Pt/AC-activated persulfate systems respectively, increasing to 76.05 % and 73.14 % with elevated temperatures from 21.5 to 50 °C. Metal and thermal activation facilitate S2O82- activation, generating reactive radicals, crucial for the degradation of PAHs via ring opening and oxygen hydrogenation reactions, yielding low-ring oxygen-containing derivatives such as organic acids, keto compounds, ethers, and esters. Furthermore, understanding the impact of parameters such as activation temperature and the types of noble metals on the degradation of PAHs within the activated persulfate system provides a theoretical foundation for the remediation of PAH-contaminated soil.

2.
Curr Alzheimer Res ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38529601

ABSTRACT

BACKGROUND: Alzheimer's Disease (AD) is the most prevalent type of dementia. The early change of gut microbiota is a potential biomarker for preclinical AD patients. OBJECTIVE: The study aimed to explore changes in gut microbiota characteristics in preclinical AD patients, including those with Subjective Cognitive Decline (SCD) and Mild Cognitive Impairment (MCI), and detect the correlation between gut microbiota characteristics and cognitive performances. METHODS: This study included 117 participants [33 MCI, 54 SCD, and 30 Healthy Controls (HC)]. We collected fresh fecal samples and blood samples from all participants and evaluated their cognitive performance. We analyzed the diversity and structure of gut microbiota in all participants through qPCR, screened characteristic microbial species through machine learning models, and explored the correlations between these species and cognitive performances and serum indicators. RESULTS: Compared to the healthy controls, the structure of gut microbiota in MCI and SCD patients was significantly different. The three characteristic microorganisms, including Bacteroides ovatus, Bifidobacterium adolescentis, and Roseburia inulinivorans, were screened based on the best classification model (HC and MCI) having intergroup differences. Bifidobacterium adolescentis is associated with better performance in multiple cognitive scores and several serum indicators. Roseburia inulinivorans showed negative correlations with the scores of the Functional Activities Questionnaire (FAQ). CONCLUSION: The gut microbiota in patients with preclinical AD has significantly changed in terms of composition and richness. Correlations have been discovered between changes in characteristic species and cognitive performances. Gut microbiota alterations have shown promise in affecting AD pathology and cognitive deficit.

3.
Toxics ; 12(3)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38535940

ABSTRACT

Persulfate-based advanced oxidation process has been proven to be a promising method for the toxic pesticide chlorpyrifos (CPY) degradation in wastewater treatment. However, due to the limitation for the short-lived intermediates detection, a comprehensive understanding for the degradation pathway remains unclear. To address this issue, density functional theory was used to analyze the degradation mechanism of CPY at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level, and computational toxicology methods were employed to explore the toxicity of CPY and its degradation products. Results show that hydroxyl radicals (·OH) and sulfate radicals (SO4•-) initiate the degradation reactions by adding to the P=S bond and abstracting the H atom on the ethyl group, rather than undergoing α-elimination of the pyridine ring in the persulfate oxidation process. Moreover, the addition products were attracted and degraded by breaking the P-O bond, while the abstraction products were degraded through dealkylation reactions. The transformation products, including 3,5,6-trichloro-2-pyridynol, O,O-diethyl phosphorothioate, chlorpyrifos oxon, and acetaldehyde, obtained through theoretical calculations have been detected in previous experimental studies. The reaction rate constants of CPY with ·OH and SO4•- were 6.32 × 108 and 9.14 × 108 M-1·s-1 at room temperature, respectively, which was consistent with the experimental values of 4.42 × 109 and 4.5 × 109 M-1 s-1. Toxicity evaluation results indicated that the acute and chronic toxicity to aquatic organisms gradually decreased during the degradation process. However, some products still possess toxic or highly toxic levels, which may pose risks to human health. These research findings contribute to understanding the transformation behavior and risk assessment of CPY in practical wastewater treatment.

4.
Quant Imaging Med Surg ; 13(8): 5258-5270, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37581056

ABSTRACT

Background: Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are preclinical stages of Alzheimer's disease (AD). Individual biomarkers are essential for evaluating altered neurological outcomes at both SCD and MCI stages for early diagnosis and intervention of AD. In this study, we aimed to investigate the relationships between topological properties of the individual brain morphological network and clinical cognitive performances among healthy controls (HCs) and patients with SCD or MCI. Methods: The topological measurements of individual morphological networks were analyzed using graph theory, and inter-group differences of standard graph topology were correlated and regressed to scores of clinical cognitive functions. Results: Compared with HCs, the topology of the individual morphological networks in SCD and MCI patients was significantly altered. At the global level, altered topology was characterized by lower global efficiency, shorter characteristics path length, and normalized characteristics path length [all P<0.05, false discovery rate (FDR) corrected]. In addition, at the regional level, SCD and MCI patients exhibited abnormal degree centrality in the caudate nucleus and nodal efficiency in the caudate nucleus, right insula, lenticular nucleus, and putamen (all P<0.05, FDR corrected). Conclusions: The topological features of individual gray matter morphological networks may serve as biomarkers to improve disease prognosis and intervention in the early stages of AD, namely SCD and MCI. Moreover, these findings may further elucidate the relationships between brain morphological alterations and cognitive dysfunctions in SCD and MCI.

5.
J Hazard Mater ; 458: 131937, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37421856

ABSTRACT

Cadmium (Cd) pollution is regarded as a potent problem due to its hazard risks to the environment, making it crucial to be removed. Compared to the physicochemical techniques (e.g., adsorption, ion exchange, etc.), bioremediation is a promising alternative technology for Cd removal, due to its cost-effectiveness, and eco-friendliness. Among them, microbial-induced cadmium sulfide mineralization (Bio-CdS NPs) is a process of great significance for environmental protection. In this study, microbial cysteine desulfhydrase coupled with cysteine acted as a strategy for Bio-CdS NPs by Rhodopseudomonas palustris. The synthesis, activity, and stability of Bio-CdS NPs-R. palustris hybrid was explored under different light conditions. Results show that low light (LL) intensity could promote cysteine desulfhydrase activities to accelerate hybrid synthesis, and facilitated bacterial growth by the photo-induced electrons of Bio-CdS NPs. Additionally, the enhanced cysteine desulfhydrase activity effectively alleviated high Cd-stress. However, the hybrid rapidly dissolved under changed environmental factors, including light intensity and oxygen. The factors affecting the dissolution were ranked as follows: darkness/microaerobic ≈ darkness/aerobic < LL/microaerobic < high light (HL)/microaerobic < LL/aerobic < HL/aerobic. The research provides a deeper understanding of Bio-CdS NPs-bacteria hybird synthesis and its stability in Cd-polluted water, allowing advanced bioremediation treatment of heavy metal pollution in water.


Subject(s)
Nanoparticles , Rhodopseudomonas , Cadmium , Cystathionine gamma-Lyase/metabolism , Biomineralization , Rhodopseudomonas/metabolism , Sulfides , Water
6.
Cell Death Discov ; 9(1): 181, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301856

ABSTRACT

Hepatoma-derived growth factor (HDGF) expression is associated with poor prognosis in non-small cell lung cancer (NSCLC); however, whether HDGF affects gefitinib resistance in NSCLC remains unknown. This study aimed to explore the role of HDGF in gefitinib resistance in NSCLC and to discover the underlying mechanisms. Stable HDGF knockout or overexpression cell lines were generated to perform experiments in vitro and in vivo. HDGF concentrations were determined using an ELISA kit. HDGF overexpression exacerbated the malignant phenotype of NSCLC cells, while HDGF knockdown exerted the opposite effects. Furthermore, PC-9 cells, which were initially gefitinib-sensitive, became resistant to gefitinib treatment after HDGF overexpression, whereas HDGF knockdown enhanced gefitinib sensitivity in H1975 cells, which were initially gefitinib-resistant. Higher levels of HDGF in plasma or tumor tissue also indicated gefitinib resistance. The effects of HDGF on promoting the gefitinib resistance were largely attenuated by MK2206 (Akt inhibitor) or U0126 (ERK inhibitor). Mechanistically, gefitinib treatment provoked HDGF expression and activated the Akt and ERK pathways, which were independent of EGFR phosphorylation. In summary, HDGF contributes to gefitinib resistance by activating the Akt and ERK signaling pathways. The higher HDGF levels may predict poor efficacy for TKI treatment, thus it has the potential to serve as a new target for overcoming tyrosine kinase inhibitor resistance in combating NSCLC.

7.
Sci Total Environ ; 866: 161323, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36603632

ABSTRACT

We developed a material of activated carbon (AC)-supported highly active iron-based bimetal (iron-copper bimetal/AC, Fe-Cu/AC) with high efficiency for polycyclic aromatic hydrocarbons (PAHs) degradation in soil by activating persulfate, benefiting from the synergistic effect that the characteristics of AC with porous carbon backbone, multiple active functional groups, high loading capacity and the characteristics of FeCu bimetal with high activity. The addition of Cu to the Fe-based/AC activator not only improved the dispersibility of Fe particles but also maintained the stability of the metal in the Fe-Cu/AC. The thermal activation (50 °C) promoted the degradation of PAHs by the Fe-Cu/AC-activated S2O82- system. Of the various systems tested, the Fe-Cu/AC-activated S2O82- system had the best degradation efficiency for 19 PAHs, with the overall efficiency following the order of Fe-Cu/AC + S2O82- > Fe-Cu + S2O82- > Fe-Cu/AC > S2O82-. The degradation mechanism of the Fe-Cu/AC-activated S2O82- system on soil PAHs showed that OH, OOH, and SO4- were the main active groups involved in the degradation of target PAHs. The target pollutants and their degradation products in the Fe-Cu/AC-activated S2O82- system indicated specific exposure pathways, providing a theoretical basis for the remediation of PAH-contaminated soil.

8.
Article in English | MEDLINE | ID: mdl-36231857

ABSTRACT

Rhamnolipids, a type of biosurfactant, represent a potential strategy for both enhancing organismic resistance and in situ remediation of heavy metals contaminations. In-depth study of the mechanism of rhamnolipids synthesis in response to heavy metals stress, is indispensable for a wide use of biosurfactant-secreting microbes in bioremediation. In this study, we employed the wild-type and the rhlAB deficient strain (ΔrhlAB) of Pseudomonas aeruginosa, a prototypal rhamnolipids-producing soil microorganism, to investigate its responses to cadmium resistance based on its physicochemical, and physiological properties. Compared with the wild-type strain, the ΔrhlAB were more sensitive to Cd-stress at low Cd concentration (<50 mg/L), whereas there was little difference in sensitivity at higher Cd concentrations, as shown by spot titers and cell viability assays. Secreted rhamnolipids reduced intracellular Cd2+ accumulation to alleviate Cd2+ stress, whereas endogenous rhamnolipids played a limited role in alleviating Cd2+ stress. Synthesized rhamnolipids exhibited a higher critical micelle concentration (CMC) (674.1 mg/L) and lower emulsification index (4.7%) under high Cd-stress, while these parameters showed no obvious changes. High Cd-stress resulted in high hydrophilic wild-type bacterial surface and lower bioremediation ability. This study could advance a deeper understanding of the mechanism of cadmium resistance and provide a theoretical foundation for the application of biosurfactant and biosurfactant-secreted bacterium in contaminant bioremediation.


Subject(s)
Cadmium , Metals, Heavy , Bacteria/metabolism , Biodegradation, Environmental , Cadmium/metabolism , Cadmium/toxicity , Glycolipids , Metals, Heavy/metabolism , Micelles , Pseudomonas aeruginosa/genetics , Soil , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
9.
BMC Cancer ; 22(1): 868, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35945555

ABSTRACT

BACKGROUND: Preoperative neoadjuvant chemoradiation (nCRT) has been the standard treatment for locally advanced rectal cancer. Serum biomarkers to stratify patients with respect to prognosis and response to nCRT are needed due to the diverse response to the therapy. METHODS: Thirteen paired pre- and post-nCRT sera from rectal cancer patients were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ) method. Twenty-five proteins were selected for validation by parallel reaction monitoring (PRM) in ninety-one patients. RESULTS: Totally, 310 proteins were identified and quantified in sera samples. Reactome pathway analysis showed that the immune activation-related pathways were enriched in response to nCRT. Twenty-five proteins were selected for further validation. PRM result showed that the level of PZP was higher in pathological complete response (pCR) patients than non-pCR patients. The Random Forest algorithm identified a prediction model composed of 10 protein markers, which allowed discrimination between pCR patients and non-pCR patients (area under the curve (AUC) = 0.886 on testing set). Higher HEP2 and GELS or lower S10A8 in baseline sera were associated with better prognosis. Higher APOA1 in post nCRT sera was associated with better disease-free survival (DFS). CONCLUSIONS: We identified and confirmed a 10-protein panel for nCRT response prediction and four potential biomarkers HEP2, GELS, S10A8 and APOA1 for prognosis of rectal cancer based on iTRAQ-based comparative proteomics screening and PRM-based targeted proteomic validation.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Biomarkers , Chemoradiotherapy , Gels , Humans , Proteomics/methods , Rectal Neoplasms/pathology , Treatment Outcome
10.
Front Aging Neurosci ; 14: 992873, 2022.
Article in English | MEDLINE | ID: mdl-36589542

ABSTRACT

Objective: Cognitive and motor dysfunctions in older people become more evident while dual-tasking. Several dual-task paradigms have been used to identify older individuals at the risk of developing Alzheimer's disease and dementia. This study evaluated gait kinematic parameters for dual-task (DT) conditions in older adults with mild cognitive impairment (MCI), subjective cognitive decline (SCD), and normal cognition (NC). Method: This is a cross-sectional, clinical-based study carried out at the Zhongshan Rehabilitation Branch of First Affiliated Hospital of Nanjing Medical University, China. Participants: We recruited 83 community-dwelling participants and sorted them into MCI (n = 24), SCD (n = 33), and NC (n = 26) groups based on neuropsychological tests. Their mean age was 72.0 (5.55) years, and male-female ratio was 42/41 (p = 0.112). Each participant performed one single-task walk and four DT walks: DT calculation with subtracting serial sevens; DT naming animals; DT story recall; and DT words recall. Outcome and measures: Kinematic gait parameters of speed, knee peak extension angle, and dual-task cost (DTC) were obtained using the Vicon Nexus motion capture system and calculated by Visual 3D software. A mixed-effect linear regression model was used to analyze the data. Results: The difference in gait speed under DT story recall and DT calculation was -0.099 m/s and - 0.119 m/s (p = 0.04, p = 0.013) between MCI and SCD, respectively. Knee peak extension angle under DT story recall, words recall, and single task was bigger in the MCI group compared to the NC group, respectively (p = 0.001, p = 0.001, p = 0.004). DTC was higher in the DT story recall test than all other DT conditions (p < 0.001). Conclusion: Kinematic gait parameters of knee peak extension angle for the DT story recall were found to be sensitive enough to discriminate MCI individuals from NC group. DTC under DT story recall was higher than the other DT conditions.

11.
Ecotoxicol Environ Saf ; 223: 112601, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34385060

ABSTRACT

Although standard two-dimensional (2D) cell culture is an effective tool for cell studies, monolayer cultivation can yield imperfect or misleading information about numerous biological functions. In this study, we developed an alveolar-capillary exchange (ACE) chip aiming to simulate the cellular microenvironment at the alveolar-capillary interface. The ACE chip was designed with two chambers for culturing alveolar epithelial cells and vascular endothelial cells separately, which are separated by a microporous polycarbonate film that allows for the exchange of soluble biomolecules. Using this model, we further tested the toxic effects of fine particulate matter (PM2.5), a form of airborne pollutant known to induce adverse effects on human respiratory system. These effects are largely associated with the ability of PM2.5 to penetrate the alveoli, where it negatively affects the pulmonary function. Our results indicate that alveolar epithelial cells cultured in the ACE chip in solo and coculture with vascular endothelial cells underwent oxidative injury-induced apoptosis mediated via the PEAK-eIF2α signaling pathway of endoplasmic reticulum stress. The use of ACE chip in an alveolar epithelial cell-vascular endothelial cell coculture model revealed cellular vulnerability to PM2.5. Therefore, this chip provides a feasible surrogate approach in vitro for investigating and simulating the cellular microenvironment responses associated with ACE in vivo.


Subject(s)
Air Pollutants , Air Pollutants/toxicity , Alveolar Epithelial Cells , Endothelial Cells , Humans , Lung , Particulate Matter/toxicity
12.
Int J Mol Med ; 47(6)2021 Jun.
Article in English | MEDLINE | ID: mdl-33907828

ABSTRACT

The toxicity of chloroacetamide herbicide in embryo development remains unclear. Acetochlor (AC) is a chloroacetamide that metabolizes into 2­ethyl­6­methyl-2-chloroacetanilide (CMEPA) and 6­ethyl­o­toluidine (MEA). The present study determined the potential effect of AC and its metabolites on embryo development. Both HepG2 cells and zebrafish embryos were exposed to AC, CMEPA and MEA in the presence or absence of co­treatment with anti­reactive oxygen species (ROS) reagent N­acetylcysteine. The generation of ROS, levels of superoxide dismutase (SOD) and glutathione (GSH) in HepG2 cells and lactate dehydrogenase (LDH) leakage from HepG2 cells were investigated. The effects of AC, CMEPA and MEA on DNA breakage, MAPK/ERK pathway activity, viability and apoptosis of HepG2 cells were examined by comet assay, western blotting, MTT assay and flow cytometry, respectively. Levels of LDH, SOD and GSH in zebrafish embryos exposed to AC, CMEPA and MEA were measured. The hatching and survival rates of zebrafish embryos exposed to AC, CMEPA and MEA, were determined, and apoptosis of hatched fish was investigated using acridine orange staining. The present data showed AC, CMEPA and MEA induced generation of ROS and decreased levels of SOD and GSH in HepG2 cells, which in turn promoted DNA breakage and LDH leakage from cells, ultimately inhibiting cell viability and inducing apoptosis, as well as phosphorylation of JNK and P38. However, co­treatment with N­acetylcysteine alleviated the pro­apoptosis effect of AC and its metabolites. Moreover, exposure to AC, CMEPA and MEA lead to toxicity of zebrafish embryos with decreased SOD and GSH and increased LDH levels and cell apoptosis, ultimately decreasing the hatching and survival rates of zebrafish, all of which was attenuated by treatment with N­acetylcysteine. Therefore, AC and its metabolites (CMEPA and MEA) showed cytotoxicity and embryo development toxicity.


Subject(s)
Acetamides/metabolism , Acetamides/toxicity , Herbicides/metabolism , Herbicides/toxicity , Metabolome , Mutagenicity Tests , Acetanilides/toxicity , Animals , Apoptosis/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Glutathione/metabolism , Hep G2 Cells , Humans , L-Lactate Dehydrogenase/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Survival Analysis , Toluidines/toxicity , Zebrafish/embryology
13.
J Hazard Mater ; 410: 124536, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33257126

ABSTRACT

Microplastics pollution has emerged as one of the top-ranked global environmental issues, receiving worldwide attention in recent years. However, knowledge about the detrimental effects of microplastics on human health is still limited. In real-world settings, the physicochemical characteristics of microplastics were modified by environmental and biological transformation, largely changing their ultimate toxicity. Nonetheless, the toxicity change related to transformation of microplastics has not been considered in most published studies thus far. In the current study, we investigated the cytotoxicity of transformed polystyrene microplastics in hepatocytes. Our results revealed that 500 nm polystyrene microplastics, which were chemically transformed by simulated gastricfluid, exacerbated their adverse effects on SMMC-7721 cells at 20 µg/mL for 24 h treatment, including morphological alteration, membrane damage and increased cell apoptosis via oxidative stress. This exacerbated cytotoxicity could be at least partially explained by the degradation, changed surface charge and altered surface chemistry of these polystyrene microplastics after transformation. In conclusion, our study demonstrates that the hepatic cytotoxicity of polystyrene microplastics is enhanced after transformation.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Oxidative Stress , Plastics/toxicity , Polystyrenes/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
14.
Chemosphere ; 267: 128875, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33187660

ABSTRACT

In this research, a novel iron based bimetallic nanoparticles (Fe-Ni) supported on activated carbon (AC) were synthesized and employed as an activator of persulfate in polycyclic aromatic hydrocarbons (PAHs) polluted sites remediation. AC-supported Fe-Ni activator was prepared according to two-step reduction method: the liquid phase reduction and H2- reduction under high temperature (600 °C), which was defined as Fe-Ni/AC. Characterizations using micropore physisorption analyzer, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HR-TEM) showed that the synthetic material had large specific surface area, nano-size and carbon-encapsulated metal particles, moreover, the lattice fringes of metals were clearly defined. The PAH compound types and their concentrations were determined by gas chromatography mass spectrometry (GC-MS) with SIM mode, the method detection limit (MDL) was estimated to about 0.21 µg/kg for PAHs, and the average recovery of PAHs was 96.3%. Mechanisms of PAH oxidation degradation with the reaction system of Fe-Ni/AC activated persulfate were discussed, the results showed that short-life free radicals, such as SO4-·, OH·, and OOH· were generated simultaneously, which acted as strong oxidizing radicals, resulting in the oxidation and almost complete opening of the PAH rings.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Charcoal , Iron , Oxidation-Reduction , Polycyclic Aromatic Hydrocarbons/analysis , Soil , Soil Pollutants/analysis , Sulfates
15.
Chemosphere ; 239: 124807, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31520982

ABSTRACT

The characteristics of polyvinylpyrrolidone (PVP)-stabilised nano-zero-valent iron (PVP-NZVI) and its application, combined with surfactant, to trichloroethylene (TCE)-contaminated soil were investigated. Two surfactants (cetyltrimethylammonium bromide [CTAB] and sodium dodecyl sulphate [SDS]) were tested for their ability to enhance the remedial activity of PVP-NZVI in 3 h batch experiments. The prepared PVP-NZVI formed nanoparticles ∼70 nm in diameter. The isoelectric point of PVP-NZVI was about 8.51, similar to the initial pH. X-ray diffraction and X-ray photoelectron spectroscopy analyses revealed that ZVI was the main active component of PVP-NZVI, and carbonised products of the target were observed. The TCE dechlorination efficiency by PVP-NZVI was about 84.73%; the efficiency by PVP-NZVI was about 20% higher when combined with SDS than with CTAB. Therefore, application of PVP-NZVI with SDS represents a potential remediation approach for TCE-contaminated soil.


Subject(s)
Environmental Restoration and Remediation/methods , Iron/chemistry , Soil/chemistry , Surface-Active Agents/chemistry , Trichloroethylene/chemistry , Halogenation , Nanoparticles/chemistry , Photoelectron Spectroscopy , Povidone/chemistry , Sodium Dodecyl Sulfate , Soil Pollutants/chemistry , Soil Pollutants/isolation & purification , X-Ray Diffraction
16.
BMC Infect Dis ; 19(1): 466, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31126252

ABSTRACT

BACKGROUND: Coxsackievirus B3 (CV-B3) is usually associated with aseptic meningitis and myocarditis; however, the association between CV-B3 and hand, foot, and mouth disease (HFMD) has not been clearly demonstrated, and the phylogenetic dynamics and transmission history of CV-B3 have not been well summarized. METHOD: Two HFMD outbreaks caused by CV-B3 were described in Hebei Province in 2012 and in Shandong Province in 2016 in China. To analyze the epidemiological features of two CV-B3 outbreaks, a retrospective analysis was conducted. All clinical specimens from CV-B3 outbreaks were collected and disposed according to the standard procedures supported by the WHO Global Poliovirus Specialized Laboratory. EV genotyping and phylogenetic analysis were performed to illustrate the genetic characteristics of CV-B3 in China and worldwide. RESULTS: Two transmissible lineages (lineage 2 and 3) were observed in Northern China, which acted as an important "reservoir" for the transmission of CV-B3. Sporadic exporting and importing of cases were observed in almost all regions. In addition, the global sequences of CV-B3 showed a tendency of geographic-specific clustering, indicating that geographic-driven adaptation plays a major role in the diversification and evolution of CV-B3. CONCLUSIONS: Overall, our study indicated that CV-B3 is a causative agent of HFMD outbreak and revealed the phylogenetic dynamics of CV-B3 worldwide, as well as provided an insight on CV-B3 outbreaks for effective intervention and countermeasures.


Subject(s)
Enterovirus B, Human/genetics , Enterovirus B, Human/pathogenicity , Hand, Foot and Mouth Disease/epidemiology , Hand, Foot and Mouth Disease/virology , Biological Evolution , China/epidemiology , Cluster Analysis , Coxsackievirus Infections/epidemiology , Disease Outbreaks , Enterovirus B, Human/physiology , Humans , Phylogeny , Retrospective Studies
17.
Front Biosci (Landmark Ed) ; 24(6): 1085-1096, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30844732

ABSTRACT

Red blood cells (RBCs) are exposed to exogenous reactive oxygen species in the circulatory system. To this end, the interactions between the different hemoglobin (Hb) subunits and peroxiredoxin 2, which is a ubiquitous member of the antioxidant enzymes that also controls the cytokine-induced peroxide levels, were assessed. We predicted by the increment of diversity with quadratic discriminant analysis (IDQD) that peroxiredoxin2 (Prx2) could interact with the hemoglobin alpha, beta and gamma subunits but not with the delta subunit. Coimmunoprecipitation (co-IP), electrospray ionization quadrupole time of flight (ESI-Q-TOF) mass spectrometry, Western blotting and X-ray absorption fine structure (XAFS) spectroscopy were performed to verify these predictions. The results showed that Prx2 was a member of the beta-globin immunoprecipitating complex that existed in hemoglobin A, hemolysate-hemoglobin A, hemoglobin A-hemoglobin A2, hemolysate-hemoglobin A-hemoglobin A2 and hemoglobin A2 but not in hemolysate-hemoglobin A2. Adding Prx2 to hemoglobin A altered the second shell of iron embedded in hemoglobin A. Therefore, Prx2 interacts with hemoglobin A (Alpha2Beta2) and hemoglobin F (Alpha2Gamma2) but not with hemoglobin A2 (Alpha2Delta2).


Subject(s)
Hemoglobin Subunits/chemistry , Homeodomain Proteins/chemistry , Peroxiredoxins/chemistry , Algorithms , Chromatography, Liquid , Erythrocytes/chemistry , Hemoglobins/chemistry , Hemolysis , Humans , Immunoprecipitation , Mass Spectrometry , Oxidative Stress , Peptide Fragments/chemistry , Protein Binding , Protein Domains , Spectrometry, Mass, Electrospray Ionization
18.
Biomed Pharmacother ; 114: 108800, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30921705

ABSTRACT

Chemoresistance is one of the major challenges for the breast cancer treatment. Owing to its heterogeneous nature, the chemoresistance mechanisms of breast cancer are complicated, and not been fully elucidated. The existing treatments fall short of offering adequate solution to drug resistance, so more effective approaches are desperately needed to improve existing therapeutic regimens. To overcome this hurdle, a number of strategies are being investigated, such as novel agents or drug carriers and combination treatment. In addition, some new therapeutics including gene therapy and immunotherapy may be promising for dealing with the resistance. In this article, we review the mechanisms of chemoresistance in breast cancer. Furthermore, the potential therapeutic methods to overcome the resistance were discussed.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Combined Modality Therapy/methods , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunotherapy/methods
19.
Viruses ; 11(1)2019 01 18.
Article in English | MEDLINE | ID: mdl-30669266

ABSTRACT

Mutations in hepatitis B virus (HBV) surface promoter II (SPII) have not been well studied in hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) patients. We aimed to investigate SPII mutations in such patients and their biological and clinical impacts. Direct sequencing was used to detect SPII mutations in 106 HBeAg-positive treatment-naïve CHB patients with genotype C (82.1% (87/106) was C2) HBV infection. Results showed that mutation frequency in transcription factor (TF) unbinding region was significantly higher than that in TF binding region of SPII (C1: 3.4% vs. 1.3%; C2: 2.6% vs. 1.3%; p < 0.0001). Luciferase assay revealed distinct promoter activities among SPII mutants; especially SPII of G120A mutant had a 15-fold higher activity than that of wild-type (p < 0.001). In vitro experiments in HepG2 cells showed that G82A, A115C and G120A mutants increased the hepatitis B surface antigen (HBsAg) levels, while C18T had an opposite effect. G82A, A115C and G120A mutants boosted the intracellular HBV total RNA level. G120A mutation resulted in an increased HBV DNA level in vitro, consistent with the serological results in patients. Thus, novel SPII mutations would affect promoter activity, HBsAg, HBV DNA and HBV total RNA levels, suggesting their potential biological and clinical significances.


Subject(s)
DNA, Viral/analysis , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Mutation , Promoter Regions, Genetic , Adolescent , Adult , DNA, Viral/blood , Female , Genotype , Hep G2 Cells , Hepatitis B, Chronic , Humans , Male , Middle Aged , RNA, Viral/analysis , Sequence Analysis, DNA , Transcription Factors/genetics , Transcriptional Activation , Viral Load , Young Adult
20.
Theranostics ; 8(8): 2094-2106, 2018.
Article in English | MEDLINE | ID: mdl-29721065

ABSTRACT

Angiogenesis plays a critical role in tumor aggressiveness, and a lot of anti-angiogenic agents have been used in clinical therapy. The therapeutic efficacy of peptides are generally restricted by the short in vivo life-time, thus, we were interested in developing a novel albumin-based and maleimidopropionic acid-conjugated peptide to prolong the half-life and improve the anti-tumor effect. Methods: We developed a peptide F56 with a maleimidopropionic acid (MPA) at the C-terminal (denoted as F56-CM), which allows immediate and irreversible conjugation with serum albumin. Biological property and anti-tumor activity of F56-CM were evaluated in vitro and in vivo. Results: We showed that F56-CM reduced migration and tube formation of endothelial cells in vitro and inhibited the generation of subintestinal vessels (SIV) in zebrafish embryos in vivo. F56-CM inhibited vascular endothelial growth factor (VEGF) induced phosphorylation of VEGFR1 and activation of the PI3K-AKT axis. Furthermore, F56-CM rapidly conjugated with albumin upon intravenous injection and extended the biological half-life of F56 from 0.4249 h to 6.967 h in rats. Compared with F56, F56-CM exhibited stronger anti-tumor activity on both BGC-823 gastric cancer and HT-29 colon cancer xenografts in nude mice, and the statistical difference was remarkable. More significantly, the efficacy of F56-CM inhibiting lung metastasis of BGC-823 cells was also better than that of F56. The inhibition rates were 62.1% and 78.9% for F56 and F56-CM respectively when administrated every day, and 43.8% and 63.1% when administrated every four days at equal dose. Conclusions: Taken together, our results demonstrated that F56-CM has considerable potential for cancer therapy.


Subject(s)
Albumins/chemistry , Antineoplastic Agents/pharmacology , Maleimides/pharmacology , Oligopeptides/pharmacology , Propionates/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line , Cell Movement/drug effects , Embryo, Nonmammalian/metabolism , Half-Life , Humans , Male , Maleimides/chemistry , Mice, Inbred BALB C , Neoplasm Metastasis , Neovascularization, Physiologic/drug effects , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Propionates/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Xenograft Model Antitumor Assays , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...