Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Med ; 14(4): e1656, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38664597

ABSTRACT

BACKGROUND: Organoid technology is an emerging and rapidly growing field that shows promise in studying organ development and screening therapeutic regimens. Although organoids have been proposed for a decade, concerns exist, including batch-to-batch variations, lack of the native microenvironment and clinical applicability. MAIN BODY: The concept of organoids has derived patient-derived tumour organoids (PDTOs) for personalized drug screening and new drug discovery, mitigating the risks of medication misuse. The greater the similarity between the PDTOs and the primary tumours, the more influential the model will be. Recently, 'tumour assembloids' inspired by cell-coculture technology have attracted attention to complement the current PDTO technology. High-quality PDTOs must reassemble critical components, including multiple cell types, tumour matrix, paracrine factors, angiogenesis and microorganisms. This review begins with a brief overview of the history of organoids and PDTOs, followed by the current approaches for generating PDTOs and tumour assembloids. Personalized drug screening has been practised; however, it remains unclear whether PDTOs can predict immunotherapies, including immune drugs (e.g. immune checkpoint inhibitors) and immune cells (e.g. tumour-infiltrating lymphocyte, T cell receptor-engineered T cell and chimeric antigen receptor-T cell). PDTOs, as cancer avatars of the patients, can be expanded and stored to form a biobank. CONCLUSION: Fundamental research and clinical trials are ongoing, and the intention is to use these models to replace animals. Pre-clinical immunotherapy screening using PDTOs will be beneficial to cancer patients. KEY POINTS: The current PDTO models have not yet constructed key cellular and non-cellular components. PDTOs should be expandable and editable. PDTOs are promising preclinical models for immunotherapy unless mature PDTOs can be established. PDTO biobanks with consensual standards are urgently needed.


Subject(s)
Immunotherapy , Neoplasms , Organoids , Humans , Organoids/drug effects , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/immunology , Precision Medicine/methods , Avatar
2.
Int J Biol Sci ; 20(2): 664-679, 2024.
Article in English | MEDLINE | ID: mdl-38169590

ABSTRACT

Myeloid derived suppressor cells (MDSCs) are known to accumulate in cancer patients and tumor-bearing mice, playing a significant role in promoting tumor growth. Depleting MDSCs has emerged as a potential therapeutic strategy for cancer. Here, we demonstrated that a fungal polysaccharide, extracted from Grifola frondosa, can effectively suppress breast tumorigenesis in mice by reducing the accumulation of MDSCs. Treatment with Grifola frondosa polysaccharide (GFI) leads to a substantial decrease in MDSCs in the blood and tumor tissue, and a potent inhibition of tumor growth. GFI treatment significantly reduces the number and proportion of MDSCs in the spleen, although this effect is not observed in the bone marrow. Further analysis reveals that GFI treatment primarily targets PMN-MDSCs, sparing M-MDSCs. Our research also highlights that GFI treatment has the dual effect of restoring and activating CD8+T cells, achieved through the downregulation of TIGIT expression and the upregulation of Granzyme B. Taken together, our findings suggest that GFI treatment effectively eliminates PMN-MDSCs in the spleen, leading to a reduction in MDSC numbers in circulation and tumor tissues, ultimately enhancing the antitumor immune response of CD8+T cells and inhibiting tumor growth. This study introduces a promising therapeutic agent for breast cancer.


Subject(s)
Breast Neoplasms , Grifola , Myeloid-Derived Suppressor Cells , Humans , Mice , Animals , Female , Myeloid-Derived Suppressor Cells/metabolism , Breast Neoplasms/metabolism , CD8-Positive T-Lymphocytes/metabolism , Polysaccharides/pharmacology
3.
Mol Cell Biochem ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37851176

ABSTRACT

Cell death is a fundamental physiological process in all living organisms. Processes such as embryonic development, organ formation, tissue growth, organismal immunity, and drug response are accompanied by cell death. In recent years with the development of electron microscopy as well as biological techniques, especially the discovery of novel death modes such as ferroptosis, cuprotosis, alkaliptosis, oxeiptosis, and disulfidptosis, researchers have been promoted to have a deeper understanding of cell death modes. In this systematic review, we examined the current understanding of modes of cell death, including the recently discovered novel death modes. Our analysis highlights the common and unique pathways of these death modes, as well as their impact on surrounding cells and the organism as a whole. Our aim was to provide a comprehensive overview of the current state of research on cell death, with a focus on identifying gaps in our knowledge and opportunities for future investigation. We also presented a new insight for macroscopic intracellular survival patterns, namely that intracellular molecular homeostasis is central to the balance of different cell death modes, and this viewpoint can be well justified by the signaling crosstalk of different death modes. These concepts can facilitate the future research about cell death in clinical diagnosis, drug development, and therapeutic modalities.

4.
Small ; 19(49): e2206688, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37606911

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer , accounting for approximately 85% of lung cancers. For more than 40 years, platinum (Pt)-based drugs are still one of the most widely used anticancer drugs even in the era of precision medicine and immunotherapy. However, the clinical limitations of Pt-based drugs, such as serious side effects and drug resistance, have not been well solved. This study constructs a new albumin-encapsulated Pt(IV) nanodrug (HSA@Pt(IV)) based on the Pt(IV) drug and nanodelivery system. The characterization of nanodrug and biological experiments demonstrate its excellent drug delivery and antitumor effects. The multi-omics analysis of the transcriptome and the ionome reveals that nanodrug can activate ferroptosis by affecting intracellular iron homeostasis in NSCLC. This study provides experimental evidence to suggest the potential of HSA@Pt(IV) as a nanodrug with clinical application.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , Nanoparticles , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Albumins , Iron/pharmacology , Cell Line, Tumor
5.
Cell Cycle ; 22(1): 85-99, 2023 01.
Article in English | MEDLINE | ID: mdl-36004387

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is the most common and malignant type of ovarian cancer, accounting for 70%-80% of mortality. However, the treatment of HGSOC has improved little in the past few decades. Metformin is the first-line medication for the treatment of type 2 diabetes and has now gained more attention in cancer treatment. In this study, we sought to identify potential hub genes that metformin could target in the treatment of HGSOC. We downloaded GSE69428 and GSE69429 in the Gene Expression Omnibus database and performed the bioinformatics analysis. Subsequently, we analyzed the effect of Metformin in HGSOC through biological experiments. Molecular simulation docking was used to predict the interaction of Metformin and CCNE1. We chose CCNE1 for the study based on bioinformatics analysis, literature studies, and preliminary data. We evaluated that CCNE1 is overexpressed in HGSOC tissues and found that HGSOC cells with high CCNE1 expression increase sensitivity to Metformin treatment in the analysis of cell proliferation and anchorage-independent growth. Metformin could inhibit the expression of CCNE1, which is associated with the anti-proliferative effect of tumor cells. Moreover, Metformin could ameliorate the tumor growth in syngeneic orthotopic transplantation mouse models and xenograft tumorigenesis models. Furthermore, molecular simulation docking showed that Metformin may bind to CCNE1 protein, suggesting that CCNE1 could be a potential target for Metformin. Our data revealed that Metformin has antitumor effects on ovarian cancer and CCNE1 could be a potential target for Metformin.


Subject(s)
Carcinoma , Diabetes Mellitus, Type 2 , Metformin , Ovarian Neoplasms , Female , Animals , Mice , Humans , Metformin/pharmacology , Ovarian Neoplasms/pathology , Cell Proliferation , Cell Line, Tumor , Oncogene Proteins , Cyclin E
6.
Biomaterials ; 290: 121856, 2022 11.
Article in English | MEDLINE | ID: mdl-36306685

ABSTRACT

cGAS-STING pathway, as an essential intracellular immune response pathway, has attracted much attention in tumor immunotherapy. However, low metabolic stability of conventional STING agonists limits their clinical application. Recent study shows that chemotherapeutic drugs cisplatin and camptothecin (CPT) can activate cGAS-STING pathway and induce immune response by DNA damage. Nevertheless, the ability of chemotherapeutic drugs to activate STING is so weak that new strategies are required to improve drug delivery efficiency for enhanced DNA damage, and then efficiently activate cGAS-STING pathway. Herein, we have developed a hybrid platinum prodrug (CPT-Pt (IV)) which can be triggered to release cisplatin and CPT in tumor cells. CPT-Pt (IV) with high hydrophobicity is further self-assembled with a ROS sensitive polymer (P1) and mPEG2k-DSPE into ROS responsive nanoparticles (NPs). NPs could accumulate in the tumor site to release cisplatin and CPT, resulting in DNA double damage and finally activating cGAS-STING pathway, inducing DC cells maturation and increasing tumor infiltration of CD8+ T cells on colorectal cancer mouse model. This study showed that common DNA targeted drugs can activate the cGAS-STING pathway in situ via nano delivery system, and enhance the effect of chemotherapy and immunotherapy, which provide a new strategy for clinical antitumor therapy.


Subject(s)
Nanoparticles , Neoplasms , Prodrugs , Animals , Mice , Camptothecin/therapeutic use , CD8-Positive T-Lymphocytes/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Immunologic Factors , Immunotherapy , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Prodrugs/therapeutic use , Reactive Oxygen Species
7.
Exp Ther Med ; 22(2): 794, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34093750

ABSTRACT

Lung adenocarcinoma is the most common subtype of non-small cell lung carcinoma. Tanshinone I is an important fat-soluble component in the extract of Salvia miltiorrhiza that has been reported to inhibit lung adenocarcinoma cell proliferation. However, no studies have clearly demonstrated changes in lung adenocarcinoma gene expression and signaling pathway enrichment following Tanshinone I treatment. And it remains unclear whether salvianolate has an effect on lung adenocarcinoma. The present study downloaded the GSE9315 dataset from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) and the underlying signaling pathways involved after Tanshinone I administration in the lung adenocarcinoma cell line CL1-5. The results revealed that there were 28 and 102 DEGs in the low dosage group (0.01 and 0.10 µg/ml Tanshinone I) and medium dosage groups (1 and 10 µg/ml Tanshinone I), respectively. In the low dosage group, DEGs were mainly enriched in 'positive regulation of T-helper cell differentiation' and 'protein complex'. In the medium dosage group, 102 DEGs were enriched in 'MAPK cascade' and 'extracellular exosome'. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated enrichment of both groups in the PI3K-Akt signaling pathway. Furthermore, there were nine overlapping DEGs [ADP ribosylation factor-interacting protein 2, chemokine (C-X-C motif) ligand 6, SH2 domain-containing adaptor protein B, Src homology 2 domain-containing transforming protein1, collagen type VI α1 chain, elastin, integrin subunit α, endoplasmic reticulum mannosyl-oligosaccharide 1,2-α-mannosidase and sterile α motif domain-containing 9 like] between the two groups, which serve to be potential targets for the treatment of lung adenocarcinoma. The present study also investigated the possible effects of salvianolate on lung adenocarcinoma in vivo using nude mouse xenograft models injected with the A549 cell line. The data revealed that salvianolate not only suppressed lung adenocarcinoma tumor growth of in nude mice, but also downregulated the expression levels of ATP7A and ATP7B, which are important proteins in the tumorigenesis and chemotherapy of lung adenocarcinoma. The present study provided evidence for the potential use of Salvia miltiorrhiza extract for treating lung adenocarcinomas in the clinic.

8.
Cell Prolif ; 54(5): e13029, 2021 May.
Article in English | MEDLINE | ID: mdl-33768671

ABSTRACT

High-grade serous carcinoma (HGSC) is the most common and malignant histological type of epithelial ovarian cancer, the origin of which remains controversial. Currently, the secretory epithelial cells of the fallopian tube are regarded as the main origin and the ovarian surface epithelial cells as a minor origin. In tubal epithelium, these cells acquire TP53 mutations and expand to a morphologically normal 'p53 signature' lesion, transform to serous tubal intraepithelial carcinoma and metastasize to the ovaries and peritoneum where they develop into HGSC. This shifting paradigm of the main cell of origin has revolutionarily changed the focus of HGSC research. Various cell lines have been derived from the two cellular origins by acquiring immortalization via overexpression of hTERT plus disruption of TP53 and the CDK4/RB pathway. Malignant transformation was achieved by adding canonical driver mutations (such as gain of CCNE1) revealed by The Cancer Genome Atlas or by noncanonical gain of YAP and miR181a. Alternatively, because of the extreme chromosomal instability, spontaneous transformation can be achieved by long passage of murine immortalized cells, whereas in humans, it requires ovulatory follicular fluid, containing regenerating growth factors to facilitate spontaneous transformation. These artificially and spontaneously transformed cell systems in both humans and mice have been widely used to discover carcinogens, oncogenic pathways and malignant behaviours in the development of HGSC. Here, we review the origin, aetiology and carcinogenic mechanism of HGSC and comprehensively summarize the cell models used to study this fatal cancer having multiple cells of origin and overt genomic instability.


Subject(s)
Carcinoma/pathology , Models, Biological , Ovarian Neoplasms/pathology , Animals , Carcinoma/metabolism , Cell Transformation, Neoplastic , Fallopian Tubes/cytology , Fallopian Tubes/metabolism , Fallopian Tubes/pathology , Female , Humans , Ovarian Neoplasms/metabolism , Telomerase/genetics , Telomerase/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
Front Physiol ; 11: 605792, 2020.
Article in English | MEDLINE | ID: mdl-33551833

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is an acute respiratory infectious disease that appeared at the end of 2019. As of July 2020, the cumulative number of infections and deaths have exceeded 15 million and 630,000, respectively. And new cases are increasing. There are still many difficulties surrounding research on the mechanism and development of therapeutic vaccines. It is urgent to explore the pathogenic mechanism of viruses to help prevent and treat COVID-19. In our study, we downloaded two datasets related to COVID-19 (GSE150819 and GSE147507). By analyzing the high-throughput expression matrix of uninfected human bronchial organoids and infected human bronchial organoids in the GSE150819, 456 differentially expressed genes (DEGs) were identified, which were mainly enriched in the cytokine-cytokine receptor interaction pathway and so on. We also constructed the protein-protein interaction (PPI) network of DEGs to identify the hub genes. Then we analyzed GSE147507, which contained lung adenocarcinoma cell lines (A549 and Calu3) and the primary bronchial epithelial cell line (NHBE), obtaining 799, 460, and 46 DEGs, respectively. The results showed that in human bronchial organoids, A549, Calu3, and NHBE samples infected with SARS-CoV-2, only one upregulated gene CSF3 was identified. Interestingly, CSF3 is one of the hub genes we previously screened in GSE150819, suggesting that CSF3 may be a potential drug target. Further, we screened potential drugs targeting CSF3 by MOE; the top 50 drugs were screened by flexible docking and rigid docking, with 37 intersections. Two antiviral drugs (Elbasvir and Ritonavir) were included; Elbasvir and Ritonavir formed van der Waals (VDW) interactions with surrounding residues to bind with CSF3, and Elbasvir and Ritonavir significantly inhibited CSF3 protein expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...