Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
J Am Chem Soc ; 146(20): 13934-13948, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38741463

ABSTRACT

Double perovskite films have been extensively studied for ferroelectric order, ferromagnetic order, and photovoltaic effects. The customized ion combinations and ordered ionic arrangements provide unique opportunities for bandgap engineering. Here, a synergistic strategy to induce chemical strain and charge compensation through inequivalent element substitution is proposed. A-site substitution of the barium ion is used to modify the chemical valence and defect density of the two B-site elements in Bi2FeMnO6 double perovskite epitaxial thin films. We dramatically increased the ferroelectric photovoltaic effect to ∼135.67 µA/cm2 from 30.62 µA/cm2, which is the highest in ferroelectric thin films with a thickness of less than 100 nm under white-light LED irradiation. More importantly, the ferroelectric polarization can effectively improve the photovoltaic efficiency of more than 5 times. High-resolution HAADF-STEM, synchrotron-based X-ray diffraction and absorption spectroscopy, and DFT calculations collectively demonstrate that inequivalent ion plays a dual role of chemical strain (+1.92 and -1.04 GPa) and charge balance, thereby introducing lattice distortion effects. The reduction of the oxygen vacancy density and the competing Jahn-Teller distortion of the oxygen octahedron are the main phenomena of the change in electron-orbital hybridization, which also leads to enhanced ferroelectric polarization values and optical absorption. The inequivalent strategy can be extended to other double perovskite systems and applied to other functional materials, such as photocatalysis for efficient defect control.

2.
Nano Lett ; 24(21): 6410-6416, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38767286

ABSTRACT

CsPbI3 perovskite quantum dots (QDs) could achieve pure-red emission by reducing their size, but the increased exciton binding energy (EB) and surface defects for the small-sized QDs (SQDs) cause severe Auger and trap recombinations, thus worsening their electroluminescence (EL) performance. Herein, we utilize the dangling bonds of the SQDs as a driving force to accelerate KI dissolution to solve its low solubility in nonpolar solvents, thereby allowing K+ and I- to bond to the surface of SQDs. The EB of the SQDs was decreased from 305 to 51 meV because of the attraction of K+ to electrons, meanwhile surface vacancies were passivated by K+ and I-. The Auger and trap recombinations were simultaneously suppressed by this difunctional ligand. The SQD-based light-emitting diode showed a stable pure-red EL peak of 639 nm, an external quantum efficiency of 25.1% with low roll-off, and a brightness of 5934 cd m-2.

3.
Nano Lett ; 24(15): 4454-4461, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38572779

ABSTRACT

Colloidal quantum well (CQW) based light emitting diodes (LEDs) possess extra-high theoretical efficiency, but their performance still lags far behind conventional LEDs due to severe exciton quenching and unbalanced charge injection. Herein, we devised a gradient composition CdxZn1-xS shell to address these issues. The epitaxial shell with gradient composition was achieved through controlling competition between Cd2+ and Zn2+ cations to preferentially bind to the anions S2-. Thus, exciton quenching was suppressed greatly by passivating defects and reducing nonradiative recombination, thereby achieving near-unity photoluminescence quantum yield (PLQY). The gradient energy level of the shell reduced the hole injection barriers and increased the hole injection efficiency to balance the charge injection of LEDs. As a result, the LEDs achieved a high external quantum efficiency (EQE) of 22.83%, luminance of 111,319 cd/m2 and a long operational lifetime (T95@100 cd/m2) over 6,500 h, demonstrating the state-of-the-art performance for the CQW based LEDs.

4.
Nano Lett ; 24(17): 5238-5245, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629707

ABSTRACT

ZnTe colloidal semiconductor nanocrystals (NCs) have shown promise for light-emitting diodes (LEDs) and displays, because they are free from toxic heavy metals (Cd). However, so far, their low photoluminescence (PL) efficiency (∼30%) has hindered their applications. Herein, we devised a novel structure of ZnTe NCs with the configuration of ZnSe (core)/ZnTe (spherical quantum well, SQW)/ZnSe (shell). The inner layer ZnTe was grown at the surface of ZnSe core with avoiding using highly active and high-risk Zn sources. Due to the formation of coherently strained heterostructure which reduced the lattice mismatch, and the thermodynamic growth of ZnTe, the surface or interface defects were suppressed. A high PL efficiency of >60% was obtained for the green light-emitting ZnSe/ZnTe/ZnSe SQWs after ZnS outer layer passivation, which is the highest value for colloidal ZnTe-based NCs. This work paves the way for the development of novel semiconductor NCs for luminescent and display applications.

5.
Adv Mater ; : e2313981, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648667

ABSTRACT

Excess ammonium halides as composition additives are widely employed in perovskite light-emitting diodes (PeLEDs), aiming to achieve high performance by controlling crystallinity and passivating defects. However, an in-depth understanding of whether excess organoammonium components affect the film physical/electrical properties and the resultant device instability is still lacking. Here, the trade-off between the performance and stability in high-efficiency formamidinium lead iodide (FAPbI3)-based PeLEDs with excess ammonium halides is pointed, and the underlying mechanism is explored. Systematic experimental and theoretical studies reveal that excess halide salt-induced ion-doping largely alters the PeLEDs properties (e.g., carrier injection, field-dependent ion-drifting, defect physics, and phase stability). A surface clean assisted cross-linking strategy is demonstrated to eliminate the adverse impact of composition modulation and boost the operational stability without sacrificing the efficiency, achieving a high efficiency of 23.6%, a high radiance of 964 W sr-1 m-2 (The highest value for FAPbI3 based PeLEDs), and a prolong lifetime of 106.1 h at large direct current density (100 mA cm-2), concurrently. The findings uncovered an important link between excess halide salts and the device performance, providing a guideline for rational design of stable, bright, and high efficiency PeLEDs.

6.
Math Biosci ; 372: 109187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575057

ABSTRACT

A basic mathematical model for IL-2-based cancer immunotherapy is proposed and studied. Our analysis shows that the outcome of therapy is mainly determined by three parameters, the relative death rate of CD4+ T cells, the relative death rate of CD8+ T cells, and the dose of IL-2 treatment. Minimal equilibrium tumor size can be reached with a large dose of IL-2 in the case that CD4+ T cells die out. However, in cases where CD4+ and CD8+ T cells persist, the final tumor size is independent of the IL-2 dose and is given by the relative death rate of CD4+ T cells. Two groups of in silico clinical trials show some short-term behaviors of IL-2 treatment. IL-2 administration can slow the proliferation of CD4+ T cells, while high doses for a short period of time over several days transiently increase the population of CD8+ T cells during treatment before it recedes to its equilibrium. IL-2 administration for a short period of time over many days suppresses the tumor population for a longer time before approaching its steady-state levels. This implies that intermittent administration of IL-2 may be a good strategy for controlling tumor size.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Interleukin-2 , Neoplasms , Interleukin-2/therapeutic use , Interleukin-2/administration & dosage , Immunotherapy/methods , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Models, Theoretical , Mathematical Concepts
7.
Food Chem X ; 21: 101205, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38370301

ABSTRACT

The decomposition and oxidation of fat is essential for the formation and quality of the unique flavor of sausage. To explore the effect of lactic acid bacteria on fat decomposition and oxidation in fermented sausage, free fatty acids and volatile flavor compounds were determined by gas chromatography (GC) and headspace solid-phase microextraction (HS-SPME)-GC-MS, respectively. The results showed that the addition of Lactobacillus helveticus IMAUJBH1 inhibited fat peroxidation and relatively increased the proportion of monounsaturated fatty acids. A total of 47 volatile flavor compounds were detected, including aldehydes, esters, alcohols, and ketones. The content of substances such as hexanal, heptanal, nonanal and 1-octene-3-ol related to lipid oxidation was significantly reduced. The results obtained in this study show that the strain can further affect the flavor of the product by inhibiting the formation of lipid oxidation or peroxide flavor substances to a certain extent.

8.
Nat Commun ; 15(1): 693, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267445

ABSTRACT

Ferroelectric tunnel junctions are promising towards high-reliability and low-power non-volatile memories and computing devices. Yet it is challenging to maintain a high tunnelling electroresistance when the ferroelectric layer is thinned down towards atomic scale because of the ferroelectric structural instability and large depolarization field. Here we report ferroelectric tunnel junctions based on samarium-substituted layered bismuth oxide, which can maintain tunnelling electroresistance of 7 × 105 with the samarium-substituted bismuth oxide film down to one nanometer, three orders of magnitude higher than previous reports with such thickness, owing to efficient barrier modulation by the large ferroelectric polarization. These ferroelectric tunnel junctions demonstrate up to 32 resistance states without any write-verify technique, high endurance (over 5 × 109), high linearity of conductance modulation, and long retention time (10 years). Furthermore, tunnelling electroresistance over 109 is achieved in ferroelectric tunnel junctions with 4.6-nanometer samarium-substituted bismuth oxide layer, which is higher than commercial flash memories. The results show high potential towards multi-level and reliable non-volatile memories.

9.
Math Biosci ; 368: 109141, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38190882

ABSTRACT

Based on a deterministic and stochastic process hybrid model, we use white noises to account for patient variabilities in treatment outcomes, use a hyperparameter to represent patient heterogeneity in a cohort, and construct a stochastic model in terms of Ito stochastic differential equations for testing the efficacy of three different treatment protocols in CAR T cell therapy. The stochastic model has three ergodic invariant measures which correspond to three unstable equilibrium solutions of the deterministic system, while the ergodic invariant measures are attractors under some conditions for tumor growth. As the stable dynamics of the stochastic system reflects long-term outcomes of the therapy, the transient dynamics provide chances of cure in short-term. Two stopping times, the time to cure and time to progress, allow us to conduct numerical simulations with three different protocols of CAR T cell treatment through the transient dynamics of the stochastic model. The probability distributions of the time to cure and time to progress present outcome details of different protocols, which are significant for current clinical study of CAR T cell therapy.


Subject(s)
Immunotherapy, Adoptive , Humans , Stochastic Processes
10.
Nano Lett ; 24(1): 417-423, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38149580

ABSTRACT

Spectrally stable pure-red perovskite quantum dots (QDs) with low lead content are essential for high-definition displays but are difficult to synthesize due to QD self-purification. Here, we make use of entropy-driven quantum-confined pure-red perovskite QDs to fabricate light-emitting diodes (LEDs) that have low toxicity and are efficient and spectrum-stable. Based on experimental data and first-principles calculations, multiple element alloying results in a 60% reduction in lead content while improving QD entropy to promote crystal stability. Entropy-driven QDs exhibit photoluminescence with 100% quantum yields and single-exponential decay lifetimes without alteration of their morphology or crystal structure. The pure-red LEDs utilizing entropy-driven QDs have spectrally stable electroluminescence, achieving a brightness of 4932 cd/m2, a maximum external quantum efficiency of over 20%, and a 15-fold longer operational lifetime than the CsPbI3 QD-based LEDs. These achievements demonstrate that entropy-driven QDs can mitigate local compositional heterogeneity and ion migration.

11.
J Math Biol ; 87(6): 85, 2023 11 12.
Article in English | MEDLINE | ID: mdl-37951849

ABSTRACT

Starting from a deterministic model, we propose and study a stochastic model for human papillomavirus infection and cervical cancer progression. Our analysis shows that the chronic infection state as random variables which have the ergodic invariant probability measure is necessary for progression from infected cell population to cervical cancer cells. It is shown that small progression rate from infected cells to precancerous cells and small microenvironmental noises associated with the progression rate and viral infection help to establish such chronic infection states. It implicates that large environmental noises associated with viral infection and the progression rate in vivo can reduce chronic infection. We further show that there will be a cervical cancer if the noise associated with precancerous cell growth is large enough. In addition, comparable numerical studies for the deterministic model and stochastic model, together with Hopf bifurcations in both deterministic and stochastic systems, highlight our analytical results.


Subject(s)
Precancerous Conditions , Uterine Cervical Neoplasms , Virus Diseases , Humans , Female , Human Papillomavirus Viruses , Stochastic Processes , Persistent Infection
12.
Stem Cell Res ; 73: 103242, 2023 12.
Article in English | MEDLINE | ID: mdl-37948839

ABSTRACT

AUTS2 syndrome is a neurodevelopmental disorder caused by pathogenic variants and deletions of the AUTS2 gene, resulting in intellectual disability, microcephaly, and other phenotypes. Here, we generated a human induced pluripotent stem cell (iPSC) line from a 21-month-old boy with AUTS2 syndrome caused by a heterozygous mutation (c.1486C > T, p.Q496X) in the AUTS2 gene. The iPSCs had normal morphology and karyotype, expressed pluripotency markers, showed differentiation potential in vitro, and carried the AUTS2 gene mutation.


Subject(s)
Induced Pluripotent Stem Cells , Intellectual Disability , Neurodevelopmental Disorders , Male , Humans , Infant , Induced Pluripotent Stem Cells/metabolism , Intellectual Disability/genetics , Intellectual Disability/metabolism , Mutation/genetics , Cell Differentiation , Cytoskeletal Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Nanomicro Lett ; 15(1): 177, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37428261

ABSTRACT

Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.

14.
Mater Horiz ; 10(10): 4389-4397, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37465904

ABSTRACT

Polarization rotation caused by various strains, such as substrate and/or chemical strain, is essential to control the electronic structure and properties of ferroelectric materials. This study proposes anion-induced polarization rotation with chemical strain, which effectively improves ferroelectricity. A method for the sulfurization of BiFeO3 thin films by introducing sulfur anions is presented. The sulfurized films exhibited substantial enhancement in room-temperature ferroelectric polarization through polarization rotation and distortion, with a 170% increase in the remnant polarization from 58 to 100.7 µC cm-2. According to first-principles calculations and the results of X-ray absorption spectroscopy and high-angle annular dark-field scanning transmission electron microscopy, this enhancement arose from the introduction of S atoms driving the re-distribution of the lone-pair electrons of Bi, resulting in the rotation of the polarization state from the [001] direction to the [110] or [111] one. The presented method of anion-driven polarization rotation might enable the improvement of the properties of oxide materials.

15.
Mol Nutr Food Res ; 67(16): e2200499, 2023 08.
Article in English | MEDLINE | ID: mdl-37354055

ABSTRACT

SCOPE: Dietary intervention has emerged as a promising strategy for the management of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to investigate the ameliorative effects of the α-lactalbumin peptide Asp-Gln-Trp (DQW) against NAFLD and the underlying mechanism. METHODS AND RESULTS: The models of lipid metabolism disorders are established both in HepG2 cells and in C57BL/6J mice. The results demonstrate that DQW activates peroxisome proliferator-activated receptor α (PPARα) and subsequently ameliorates lipid deposition and oxidative stress in vitro. Interestingly, GW6471 markedly attenuates the modulatory effects of DQW on the PPARα pathway in HepG2 cells. Moreover, results of in vivo experiments indicate that DQW alleviates body weight gain, dyslipidemia, hepatic steatosis, and oxidative stress in high-fat-diet (HFD)-induced NAFLD mice. At the molecular level, DQW activates PPARα, subsequently enhances fatty acid ß-oxidation, and reduces lipogenesis, thereby ameliorating hepatic steatosis. Meanwhile, DQW may ameliorate liver injury and oxidative stress via activating the PPARα/nuclear-factor erythroid 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway. CONCLUSION: Those results indicate that α-lactalbumin peptide DQW may be an effective dietary supplement for alleviating NAFLD by alleviating lipid deposition and oxidative stress.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism , Fatty Acids, Nonesterified/pharmacology , Lactalbumin/pharmacology , Lactalbumin/metabolism , Hep G2 Cells , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Liver/metabolism , Oxidative Stress , Lipid Metabolism
16.
Small ; 19(35): e2301061, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37104854

ABSTRACT

The additive engineering strategy promotes the efficiency of solution-processed perovskite solar cells (PSCs) over 25%. However, compositional heterogeneity and structural disorders occur in perovskite films with the addition of specific additives, making it imperative to understand the detrimental impact of additives on film quality and device performance. In this work, the double-edged sword effects of the methylammonium chloride (MACl) additive on the properties of methylammonium lead mixed-halide perovskite (MAPbI3-x Clx ) films and PSCs are demonstrated. MAPbI3-x Clx films suffer from undesirable morphology transition during annealing, and its impacts on the film quality including morphology, optical properties, structure, and defect evolution are systematically investigated, as well as the power conversion efficiency (PCE) evolution for related PSCs. The FAX (FA = formamidinium, X = I, Br, and Ac) post-treatment strategy is developed to inhibit the morphology transition and suppress defects by compensating for the loss of the organic components, a champion PCE of 21.49% with an impressive open-circuit voltage of 1.17 V is obtained, and remains over 95% of the initial efficiency after storing over 1200 hours. This study elucidates that understanding the additive-induced detrimental effects in halide perovskites is critical to achieve the efficient and stable PSCs.

17.
Sci Rep ; 13(1): 3942, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894700

ABSTRACT

The effects of Limosilactobacillus fermentum 332 on quality characteristics in fermented sausage were explored in terms of physicochemical characteristics, volatile flavor components, and Quorum sensing (QS). The results showed that the pH of fermented sausage decreased from 5.20 to 4.54 within 24 h with the inoculation of L. fermentum 332. Lightness and redness were significantly improved, and hardness and chewiness were significantly increased after the addition of L. fermentum 332. With the inoculation of L. fermentum 332, the thiobarbituric acid reactive substance content decreased from 0.26 to 0.19 mg/100 g and total volatile basic nitrogen content decreased from 2.16 to 1.61 mg/100 g. In total, 95 and 104 types of volatile flavor components were detected in the control and fermented sausage inoculated with starter culture, respectively. The AI-2 activity of fermented sausage inoculated with L. fermentum 332 was significantly higher than that of the control and positively correlated with viable count and quality characteristics. These results provide support for further research on the effect of microorganisms on the quality of fermented food.


Subject(s)
Limosilactobacillus fermentum , Meat Products , Food Microbiology , Quorum Sensing , Fermentation , Meat Products/analysis
18.
Ultrason Sonochem ; 95: 106366, 2023 May.
Article in English | MEDLINE | ID: mdl-36965310

ABSTRACT

The study evaluated the effect of an ultrasound-assisted treatment on the structural and functional properties of sheep bone collagen (SBC). The type and distribution of SBC were analyzed by proteome (shotgun) technology combined with liquid chromatography-tandem mass spectrometry. Compared with pepsin extraction, the ultrasound-assisted treatment significantly increased the collagen extraction rate by 17.4 pp (P < 0.05). The characteristic functional groups and structural integrity of collagen extracted by both methods were determined via Fourier transform infrared spectroscopy, ultraviolet absorption spectroscopy, and fluorescence spectroscopy. Circular dichroism spectra revealed that the ultrasound-assisted pretreatment reduced α-helix content by 1.6 pp, ß-sheet content by 21.9 pp, and random coils content by 28.4 pp, whereas it increased ß-turn content by 51.9 pp (P < 0.05), compared with pepsin extraction. Moreover, ultrasound-assisted treatment collagen had superior functional properties (e.g., solubility, water absorption, and oil absorption capacity) and foaming and emulsion properties, compared with pepsin extraction. Furthermore, the relative content of type I collagen in ultrasound-assisted extracted SBC was highest at 79.66%; only small proportions of type II, VI, X, and XI collagen were present. Peptide activity analysis showed that SBC had potential antioxidant activity, dipeptidyl peptidase 4 inhibitory activity, and angiotensin-converting enzyme inhibitory activity; it also had anticancer, antihypertensive, anti-inflammatory, and immunomodulatory effects.


Subject(s)
Collagen , Pepsin A , Animals , Sheep , Collagen/chemistry , Chemical Phenomena , Solubility
19.
Science ; 379(6638): 1218-1224, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36952424

ABSTRACT

Atomic-scale ferroelectrics are of great interest for high-density electronics, particularly field-effect transistors, low-power logic, and nonvolatile memories. We devised a film with a layered structure of bismuth oxide that can stabilize the ferroelectric state down to 1 nanometer through samarium bondage. This film can be grown on a variety of substrates with a cost-effective chemical solution deposition. We observed a standard ferroelectric hysteresis loop down to a thickness of ~1 nanometer. The thin films with thicknesses that range from 1 to 4.56 nanometers possess a relatively large remanent polarization from 17 to 50 microcoulombs per square centimeter. We verified the structure with first-principles calculations, which also pointed to the material being a lone pair-driven ferroelectric material. The structure design of the ultrathin ferroelectric films has great potential for the manufacturing of atomic-scale electronic devices.

20.
Food Res Int ; 166: 112612, 2023 04.
Article in English | MEDLINE | ID: mdl-36914328

ABSTRACT

The interaction mode between lactic acid bacteria (LAB) and yeast in a fermentation system directly determines the quality of the products, thus understanding their mode of interaction can improve product quality. The present study investigated the effects of Saccharomyces cerevisiae YE4 on LAB from the perspectives of physiology, quorum sensing (QS), and proteomics. The presence of S. cerevisiae YE4 slowed down the growth of Enterococcus faecium 8-3 but had no significant effect on acid production or biofilm formation. S. cerevisiae YE4 significantly reduced the activity of autoinducer-2 at 19 h in E. faecium 8-3 and at 7-13 h in Lactobacillus fermentum 2-1. Expression of the QS-related genes luxS and pfs was also inhibited at 7 h. Moreover, a total of 107 E. faecium 8-3 proteins differed significantly in coculture with S. cerevisiae YE4-these proteins are involved in metabolic pathways including biosynthesis of secondary metabolites; biosynthesis of amino acids; alanine, aspartate, and glutamate metabolism; fatty acid metabolism; and fatty acid biosynthesis. Among them, proteins involved in cell adhesion, cell wall formation, two-component systems, and ABC transporters were detected. Therefore, S. cerevisiae YE4 might affect the physiological metabolism of E. faecium 8-3 by affecting cell adhesion, cell wall formation, and cell-cell interactions.


Subject(s)
Lactobacillales , Quorum Sensing , Quorum Sensing/genetics , Saccharomyces cerevisiae/metabolism , Lactobacillales/metabolism , Proteomics , Fatty Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...