Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36559767

ABSTRACT

Despite similar material composition and insulation application, the alternating current (AC) cross-linked polyethylene (XLPE) and direct current (DC) XLPE materials cannot replace each other due to different voltage forms. Herein, this work presents a systematical investigation into the effects of thermal aging on the material composition and properties of 500 kV-level commercial AC XLPE and DC XLPE materials. A higher content of antioxidants in the AC XLPE than in the DC XLPE was experimentally demonstrated via thermal analysis technologies, such as oxidation-induced time and oxidation-induced temperature. Retarded thermal oxidation and suppression of space charge effects were observed in thermally aged AC XLPE samples. On the other hand, the carbonyl index of DC XLPE dramatically rose when thermal aging was up to 168 h. The newly generated oxygen-containing groups provided deep trapping sites (~0.95 eV) for space charges and caused severe electric field distortion (120%) under -50 kV/mm at room temperature in the aged DC XLPE samples. For the unaged XLPE materials, the positive space charge packets were attributed to the residue crosslinking byproducts, even after being treated in vacuum at 70 °C for 24 h. Thus, it was reasoned that the DC XLPE material had a lower crosslinking degree to guarantee fewer crosslinking byproducts. This work offers a simple but accurate method for evaluating thermal oxidation resistance and space charge properties crucial for developing high-performance HVDC cable insulation materials.

2.
Biomacromolecules ; 23(1): 240-252, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34931820

ABSTRACT

Three-dimensional (3D) bioink plays a vital role in the construction of tissues and organs by 3D bioprinting. Collagen has outstanding biocompatibility and is widely used in the field of tissue engineering. However, due to poor mechanical properties and slow self-assembly, it is challenging to manufacture high-precision 3D bioprinted collagen scaffolds. Herein, a novel digital light processing (DLP) bioink which can satisfy the printing of complex structures has been developed. This photocurable bioink is based on collagen and supplemented with a small amount of procyanidins (PA) as a cross-linking agent. The low concentration of collagen gives the bioink good fluidity and excellent biocompatibility, and a small amount of PA increases the cross-linking density of the system to obtain better mechanical properties. Using commercial digital light processing (DLP) printers, this collagen-based ink can effectively print structures with micrometer resolution, and the fidelity of the 3D structures can reach above 90%. Cells were able to be loaded in the bioink and distributed uniformly in the collagen scaffold in an unscathed way. This photocurable collagen bioink has broad application potential in DLP 3D bioprinting.


Subject(s)
Bioprinting , Proanthocyanidins , Bioprinting/methods , Collagen , Printing, Three-Dimensional , Prospective Studies , Tissue Engineering/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...