Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.685
Filter
1.
Front Genet ; 15: 1402771, 2024.
Article in English | MEDLINE | ID: mdl-38826799

ABSTRACT

Iron oxide nanoparticles are a type of nanomaterial composed of iron oxide (Fe3O4 or Fe2O3) and have a wide range of applications in magnetic resonance imaging. Compared to iron oxide nanoparticles, extremely small iron oxide nanoparticles (ESIONPs) (∼3 nm in diameter) can improve the imaging performance due to a smaller size. However, there are currently no reports on the potential toxic effects of ESIONPs on the human body. In this study, we applied ESIONPs to a zebrafish model and performed weighted gene co-expression network analysis (WGCNA) on differentially expressed genes (DEGs) in zebrafish embryos of 48 hpf, 72 hpf, 96 hpf, and 120 hpf using RNA-seq technology. The key hub genes related to neurotoxicity and ferroptosis were identified, and further experiments also demonstrated that ESIONPs impaired the neuronal and muscle development of zebrafish, and induced ferroptosis, leading to oxidative stress, cell apoptosis, and inflammatory response. Here, for the first time, we analyzed the potential toxic effects of ESIONPs through WGCNA. Our studies indicate that ESIONPs might have neurotoxicity and could induce ferroptosis, while abnormal accumulation of iron ions might increase the risk of early degenerative neurological diseases.

2.
Animal Model Exp Med ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695685

ABSTRACT

BACKGROUND: Staphylococcus aureus is responsible for the majority of skin and soft tissue infections, which are often diagnosed at a late stage, thereby impacting treatment efficacy. Our study was designed to reveal the physiological changes at different stages of infection by S. aureus through the combined analysis of variations in the skin microenvironment, providing insights for the diagnosis and treatment of S. aureus infections. METHODS: We established a murine model of skin and soft tissue infection with S. aureus as the infectious agent to investigate the differences in the microenvironment at different stages of infection. By combining analysis of the host immune status and histological observations, we elucidate the progression of S. aureus infection in mice. RESULTS: The results indicate that the infection process in mice can be divided into at least two stages: early infection (1-3 days post-infection) and late infection (5-7 days post-infection). During the early stage of infection, notable symptoms such as erythema and abundant exudate at the infection site were observed. Histological examination revealed infiltration of numerous neutrophils and bacterial clusters, accompanied by elevated levels of cytokines (IL-6, IL-10). There was a decrease in microbial alpha diversity within the microenvironment (Shannon, Faith's PD, Chao1, Observed species, Simpson, Pielou's E). In contrast, during the late stage of infection, a reduction or even absence of exudate was observed at the infected site, accompanied by the formation of scabs. Additionally, there was evidence of fibroblast proliferation and neovascularization. The levels of cytokines and microbial composition gradually returned to a healthy state. CONCLUSION: This study reveals synchrony between microbial composition and histological/immunological changes during S. aureus-induced SSTIs.

3.
Mol Psychiatry ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698268

ABSTRACT

Both clinical and animal studies showed that the impaired functions of the orbitofrontal cortex (OFC) underlie the compulsive drug-seeking behavior of drug addiction. However, the functional changes of the microcircuit in the OFC and the underlying molecular mechanisms in drug addiction remain elusive, and little is known for whether microcircuits in the OFC contributed to drug addiction-related behaviors. Utilizing the cocaine-induced conditioned-place preference model, we found that the malfunction of the microcircuit led to disinhibition in the OFC after cocaine withdrawal. We further showed that enhanced Somatostatin-Parvalbumin (SST-PV) inhibitory synapse strength changed microcircuit function, and SST and PV inhibitory neurons showed opposite contributions to the drug addiction-related behavior of mice. Brevican of the perineuronal nets of PV neurons regulated SST-PV synapse strength, and the knockdown of Brevican alleviated cocaine preference. These results reveal a novel molecular mechanism of the regulation of microcircuit function and a novel circuit mechanism of the OFC in gating cocaine preference.

4.
Free Radic Biol Med ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705496

ABSTRACT

Phloretin has been widely perceived as an antioxidant. However, the bioavailability of phloretin in vivo is generally far too low to elicit a direct antioxidant effect by scavenging reactive oxygen species (ROS). Here we showed that administration of phloretin of apple polyphenols extended lifespan of Caenorhabditis elegans and promoted fitness. Specially phloretin enhanced the survival rates of nematodes under oxidants in an inverted U-shaped dose-response manner. The lifespan-extending effects of phloretin were mediated by ROS via complex I inhibition. The increase of ROS stimulated p38 MAPK/PMK-1 as well as transcription factors of NRF2/SKN-1 and FOXO/DAF-16. Consistent with the involvement of NRF2/SKN-1 and FOXO/DAF-16 in lifespan-extending effects, activities of SOD and CAT were enhanced by phloretin. The exogenous application of antioxidants BHA and NAC abolished the increase of ROS, the enhancement of SOD and CAT activities, and the lifespan extending effects of phloretin. Meanwhile, with the inhibition of mitochondrial complex I, ATP was instantly decreased. Both energy sensors of AMPK/AAK-2 and SIRT1/SIR-2.1 were involved in the lifespan extension by phloretin. Transcriptomic, real-time qPCR and molecular docking analyses demonstrated that the binding of phloretin at complex I located at NDUFS1/NUO-5, NDUFS2/GAS-1, and NDUFS6/NDUF-6. The molecular dynamic simulation and binding free energy calculations showed that phloretin had high binding affinities towards NDUFS1 (-7.21 kcal/mol) and NDUFS6 (-7.02 kcal/mol). Collectively, our findings suggested phloretin had effects of life expectancy enhancement and fitness promotion via redox regulations in vivo. NDUFS1/NUO-5 and NDUFS6/NDUF-6 might be new targets in the lifespan and wellness regulations.

5.
J Comput Biol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38758925

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) technology provides a means for studying biology from a cellular perspective. The fundamental goal of scRNA-seq data analysis is to discriminate single-cell types using unsupervised clustering. Few single-cell clustering algorithms have taken into account both deep and surface information, despite the recent slew of suggestions. Consequently, this article constructs a fusion learning framework based on deep learning, namely scGASI. For learning a clustering similarity matrix, scGASI integrates data affinity recovery and deep feature embedding in a unified scheme based on various top feature sets. Next, scGASI learns the low-dimensional latent representation underlying the data using a graph autoencoder to mine the hidden information residing in the data. To efficiently merge the surface information from raw area and the deeper potential information from underlying area, we then construct a fusion learning model based on self-expression. scGASI uses this fusion learning model to learn the similarity matrix of an individual feature set as well as the clustering similarity matrix of all feature sets. Lastly, gene marker identification, visualization, and clustering are accomplished using the clustering similarity matrix. Extensive verification on actual data sets demonstrates that scGASI outperforms many widely used clustering techniques in terms of clustering accuracy.

6.
Glob Chang Biol ; 30(5): e17311, 2024 May.
Article in English | MEDLINE | ID: mdl-38742695

ABSTRACT

The soil microbial carbon pump (MCP) is increasingly acknowledged as being directly linked to soil organic carbon (SOC) accumulation and stability. Given the close coupling of carbon (C) and nitrogen (N) cycles and the constraints imposed by their stoichiometry on microbial growth, N addition might affect microbial growth strategies with potential consequences for necromass formation and carbon stability. However, this topic remains largely unexplored. Based on two multi-level N fertilizer experiments over 10 years in two soils with contrasting soil fertility located in the North (Cambisol, carbon-poor) and Southwest (Luvisol, carbon-rich), we hypothesized that different resource demands of microorganism elicit a trade-off in microbial growth potential (Y-strategy) and resource-acquisition (A-strategy) in response to N addition, and consequently on necromass formation and soil carbon stability. We combined measurements of necromass metrics (MCP efficacy) and soil carbon stability (chemical composition and mineral associated organic carbon) with potential changes in microbial life history strategies (assessed via soil metagenomes and enzymatic activity analyses). The contribution of microbial necromass to SOC decreased with N addition in the Cambisol, but increased in the Luvisol. Soil microbial life strategies displayed two distinct responses in two soils after N amendment: shift toward A-strategy (Cambisol) or Y-strategy (Luvisol). These divergent responses are owing to the stoichiometric imbalance between microbial demands and resource availability for C and N, which presented very distinct patterns in the two soils. The partial correlation analysis further confirmed that high N addition aggravated stoichiometric carbon demand, shifting the microbial community strategy toward resource-acquisition which reduced carbon stability in Cambisol. In contrast, the microbial Y-strategy had the positive direct effect on MCP efficacy in Luvisol, which greatly enhanced carbon stability. Such findings provide mechanistic insights into the stoichiometric regulation of MCP efficacy, and how this is mediated by site-specific trade-offs in microbial life strategies, which contribute to improving our comprehension of soil microbial C sequestration and potential optimization of agricultural N management.


Subject(s)
Carbon , Fertilizers , Nitrogen , Soil Microbiology , Soil , Soil/chemistry , Carbon/metabolism , Carbon/analysis , Nitrogen/metabolism , Nitrogen/analysis , Fertilizers/analysis , Carbon Cycle , Microbiota
7.
Mutat Res ; 829: 111858, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38788314

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is a frequent malignancy of the female reproductive system. Recently, the aberrant expression of numerous lncRNAs has been confirmed as a key factor for cancer development. The regulatory role of PAX8-AS1 in some cancers has been investigated, but its role in OC progression remains unclear. This study focuses on the role and molecular mechanism of PAX8-AS1 in the malignant progression of OC. METHODS: Bioinformatics means were adopted to analyze the expression of PAX8-AS1, microRNA-25-3p, and LATS2 in OC tissues and the binding sites between the three. qRT-PCR was employed to determine the expression of these genes in OC cells. CCK-8, colony formation, scratch healing, and Transwell assays were used to see cell viability, proliferation, migration, and invasion, respectively. Fluorescence in situ Hybridization was performed to probe the subcellular localization of PAX8-AS1. Western blot was applied to evaluate the expression and phosphorylation levels of YAP and TAZ, and an immunofluorescence assay was used to detect the translocation of them. Dual luciferase assay was applied to validate the binding relationship between PAX8-AS1 and microRNA-25-3p, as well as between microRNA-25-3p and LATS2. RESULTS: PAX8-AS1 and LATS2 were lowly expressed. MicroRNA-25-3p was highly expressed in OC. PAX8-AS1 was expressed in cytoplasm and regulated LATS2 expression by sponging microRNA-25-3p. Overexpressing PAX8-AS1 can suppress the malignant behaviors of OC cells, whereas treatment with microRNA-mimic can reverse these results. In addition, the phosphorylation levels of YAP and TAZ increased upon oe-LATS2 treatment, and oe-LATS2 could promote YAP and TAZ translocate from the nucleus to cytoplasm. Rescue experiments demonstrated that sh-PAX8-AS1 fostered malignant progression of OC, which was reversed by simultaneous oe-LATS2. CONCLUSION: In summary, PAX8-AS1/microRNA-25-3p/LATS2 regulated the malignant progression of OC through Hippo signaling, which suggested that PAX8-AS1/microRNA-25-3p/LATS2 axis may be a novel target for OC treatment.

8.
Biosensors (Basel) ; 14(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38785686

ABSTRACT

Combinatorial drug therapy has emerged as a critically important strategy in medical research and patient treatment and involves the use of multiple drugs in concert to achieve a synergistic effect. This approach can enhance therapeutic efficacy while simultaneously mitigating adverse side effects. However, the process of identifying optimal drug combinations, including their compositions and dosages, is often a complex, costly, and time-intensive endeavor. To surmount these hurdles, we propose a novel microfluidic device capable of simultaneously generating multiple drug concentration gradients across an interlinked array of culture chambers. This innovative setup allows for the real-time monitoring of live cell responses. With minimal effort, researchers can now explore the concentration-dependent effects of single-agent and combination drug therapies. Taking neural stem cells (NSCs) as a case study, we examined the impacts of various growth factors-epithelial growth factor (EGF), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF)-on the differentiation of NSCs. Our findings indicate that an overdose of any single growth factor leads to an upsurge in the proportion of differentiated NSCs. Interestingly, the regulatory effects of these growth factors can be modulated by the introduction of additional growth factors, whether singly or in combination. Notably, a reduced concentration of these additional factors resulted in a decreased number of differentiated NSCs. Our results affirm that the successful application of this microfluidic device for the generation of multi-drug concentration gradients has substantial potential to revolutionize drug combination screening. This advancement promises to streamline the process and accelerate the discovery of effective therapeutic drug combinations.


Subject(s)
High-Throughput Screening Assays , Neural Stem Cells , Neural Stem Cells/drug effects , Humans , Cell Differentiation , Lab-On-A-Chip Devices , Platelet-Derived Growth Factor , Epidermal Growth Factor , Drug Evaluation, Preclinical , Drug Combinations , Fibroblast Growth Factors
9.
Bioresour Technol ; 403: 130894, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795924

ABSTRACT

A strategy based on artificial antibody-antigen recognition was proposed for the specific directed immobilization of lipase. The artificial antibody was synthesized using catechol as a template, α-methacrylic acid as a functional monomer, and Fe3O4 as the matrix material. Lipase was modified with 3,4-dihydroxybenzaldehyde as an artificial antigen. The artificial antibody can specifically recognize catechol fragment in the enzyme structure to achieve the immobilization of lipase. The immobilization amount, yield, specific activity, and immobilized enzyme activity were 13.2 ± 0.2 mg/g, 78.9 ± 0.4 %, 7.9 ± 0.2 U/mgprotein, and 104.6 ± 1.7 U/gcarrier, respectively. Moreover, the immobilized lipase exhibited strong reusability and regeneration ability. Additionally, the immobilized lipase successfully catalyzed the synthesis of benzyl acetate and demonstrated robust continuous catalytic activity. These results fully demonstrate the feasibility of the proposed artificial antibody-antigen-directed immobilization of lipase.

10.
Mol Biochem Parasitol ; : 111630, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795969

ABSTRACT

Toxoplasma gondii is an intracellular protozoan parasite that infects all nucleated cells except the red blood cells. Currently, nucleic acid vaccines are being widely investigated in Toxoplasma gondii control, and several nucleic acid vaccine candidate antigens have shown good protection in various studies. The aim of this study was to construct a nucleic acid vaccine with Toxoplasma gondii SRS29C as the target gene. We explored the nucleic acid vaccine with Toxoplasma surface protein SRS29C and the combined gene of SRS29C and SAG1 and evaluated its immunoprotective effect against Toxoplasma gondii. To amplify the gene fragment and clone it to the expression vector, the recombinant plasmid pEGFP-SRS29C was constructed by PCR. Eukaryotic cells were transfected with the plasmid, and the expression of the target protein was assessed using the Western blot method. The level of serum IgG was determined via ELISA, and the splenic lymphocyte proliferation ability was detected using the CCK-8 method. The percentages of CD4+ and CD8+ T cells were measured by flow cytometry. Mice were immunised three times with single-gene nucleic acid vaccine and combination vaccine. Splenic lymphocytokine expression was determined using ELISA kits. The mice's survival time was monitored and recorded during an in vivo insect assault experiment, and the vaccine's protective power was assessed. The outcomes showed that PCR-amplification of an SRS29C gene fragment was successful. The 4,733-bp vector fragment and the 1,119-bp target segment were both recognised by double digestion. Additionally, after transfection of the recombinant plasmid pEGFP-SRS29C, Western blot examination of the extracted protein revealed the presence of a target protein strip at 66kDa. The test results demonstrated that the IgG content in the serum of the pEGFP-SRS29C group and the co-immunization group was significantly higher than that of the PBS group and the empty vector group. The IgG potency induced by the co-immunization group was higher than that of the pEGFP-SRS29C group and the pEGFP-SAG1 group, the number of splenic lymphocyte proliferation number was higher than that of the PBS group and the empty vector group. The CD4+/CD8+ T ratio was higher than that of the PBS group and the empty vector group. The expression of IFN-γ and TNF-α in the splenocytes of the pEGFP-SRS29C group and the combined immunisation group was significantly higher following antigen stimulation. In the worm attack experiments, mice in the PBS and empty vector groups perished within 9 days of the worm attack, whereas mice in the pEGFP-SRS29C group survived for 18 days, mice in the pEGFP-SAG1 group survived for 21 days, and mice in the co-immunization group survived for 24 days. This demonstrates that the constructed Toxoplasma gondii nucleic acid vaccine pEGFP-SRS29C and the combined gene vaccine can induce mice to develop certain humoral and cellular immune responses, and enhance their ability to resist Toxoplasma gondii infection.

11.
ACS Nano ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820368

ABSTRACT

Chitin nanofibrils (ChNF) sourced from discarded marine biomass are shown as effective stabilizers of carbon nanomaterials in aqueous media. Such stabilization is evaluated for carbon nanotubes (CNT) considering spatial and temporal perspectives by using experimental (small-angle X-ray scattering, among others) and theoretical (atomistic simulation) approaches. We reveal that the coassembly of ChNF and CNT is governed by hydrophobic interactions, while electrostatic repulsion drives the colloidal stabilization of the hybrid ChNF/CNT system. Related effects are found to be transferable to multiwalled carbon nanotubes and graphene nanosheets. The observations explain the functionality of hybrid membranes obtained by aqueous phase processing, which benefit from an excellent areal mass distribution (correlated to piezoresistivity), also contributing to high electromechanical performance. The water resistance and flexibility of the ChNF/CNT membranes (along with its tensile strength at break of 190 MPa, conductivity of up to 426 S/cm, and piezoresistivity and light absorption properties) are conveniently combined in a device demonstration, a sunlight water evaporator. The latter is shown to present a high evaporation rate (as high as 1.425 kg water m-2 h-1 under one sun illumination) and recyclability.

12.
Sci Total Environ ; 932: 173061, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723970

ABSTRACT

Peanut yield and quality face significant threats due to climate change and soil degradation. The potential of biochar technology to address this challenge remains unanswered, though biochar is acknowledged for its capacity to enhance the soil microbial community and plant nitrogen (N) supply. A field study was conducted in 2021 on oil peanuts grown in a sand-loamy Primisol that received organic amendments at 20 Mg ha-1. The treatments consisted of biochar amendments derived from poultry manure (PB), rice husk (RB), and maize residue (MB), as well as manure compost (OM) amendment, compared to no organic amendment (CK). In 2022, during the second year after amendment, samples of bulk topsoil, rooted soil, and plants were collected at the peanut harvest. The analysis included the assessment of soil quality, peanut growth traits, microbial community, nifH gene abundance, and biological N fixation (BNF) rate. Compared to the CK, the OM treatment led to an 8 % increase in peanut kernel yield, but had no effect on kernel quality in terms of oil production. Conversely, both PB and MB treatments increased kernel yield by 10 %, whereas RB treatment showed no change in yield. Moreover, all biochar amendments significantly improved oilseed quality by 10-25 %, notably increasing the proportion of oleic acid by up to 70 %. Similarly, while OM amendment slightly decreased root development, all biochar treatments significantly enhanced root development by over 80 %. Furthermore, nodule number, fresh weight per plant, and the nifH gene abundance in rooted soil remained unchanged under OM and PB treatments but was significantly enhanced under RB and MB treatments compared to CK. Notably, all biochar amendments, excluding OM, increased the BNF rate and N-acetyl-glucosaminidase activity. These changes were attributed to alterations in soil aggregation, moisture retention, and phosphorus availability, which were influenced by the diverse physical and chemical properties of biochars. Overall, maize residue biochar contributed synergistically to enhancing soil fertility, peanut yield, and quality while also promoting increased root development, a shift in the diazotrophic community and BNF.


Subject(s)
Arachis , Charcoal , Nitrogen Fixation , Plant Roots , Soil , Arachis/growth & development , Soil/chemistry , Soil Microbiology , Fertilizers , Manure
13.
Environ Res ; 256: 119223, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810830

ABSTRACT

Compound-specific isotope analysis of nitrogen in amino acids (CSIA-AA, δ15NAA) has gained increasing popularity for elucidating energy flow within food chains and determining the trophic positions of various organisms. However, there is a lack of research on the impact of hydrolysis conditions, such as HCl concentration and hydrolysis time, on δ15NAA analysis in biota samples. In this study, we investigated two HCl concentrations (6 M and 12 M) and four hydrolysis times (2 h, 6 h, 12 h, and 24 h) for hydrolyzing and derivatizing AAs in reference materials (Tuna) and biological samples of little egret (n = 4), night heron (n = 4), sharpbelly (n = 4) and Algae (n = 1) using the n-pivaloyl-iso-propyl (NPIP) ester approach. A Dowex cation exchange resin was used to purify amino acids before derivatization. We then determined δ15NAA values using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The results revealed no significant differences (p > 0.05) in δ15NAA values among samples treated with different HCl concentrations or hydrolysis times, particularly for δ15NGlx (range: 21.0-23.5‰) and δ15NPhe (range: 4.3-5.4‰) in Tuna (12 M). Trophic positions (TPs) calculated based on δ15NAA at 2 h (little egret: 2.9 ± 0.1, night heron: 2.8 ± 0.1, sharpbelly: 2.0 ± 0.1 and Algae: 1.3 ± 0.2) were consistent with those at 24 h (3.1 ± 0.1, 2.8 ± 0.1, 2.2 ± 0.1 and 1.1 ± 0.1, respectively), suggesting that a 2-h hydrolysis time and a 6 M HCl concentration are efficient pretreatment conditions for determining δ15NAA and estimating TP. Compared to the currently used hydrolysis conditions (24 h, 6 M), the proposed conditions (2 h, 6 M) accelerated the δ15NAA assay, making it faster, more convenient, and more efficient. Further research is needed to simplify the operational processes and reduce the time costs, enabling more efficient applications of CSIA-AA.

14.
Food Funct ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814101

ABSTRACT

Background: Oxidative stress plays an important role in the occurrence and pathological process of numerous human diseases. A bidirectional relationship was found between sleep disorders and oxidative stress. However, the association between circulating antioxidant levels and the risk of sleep disorders at the population-scale has yet to be determined. Methods: We used the dataset from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 data release cycle and included 3062 adult participants aged 25-75 years. The circulating antioxidants levels in serum were measured, and the sleep status was assessed by self-reported sleep disorder questionnaire tests. We investigated the association and exposure-response relationship between the 12 main circulating antioxidants and sleep disorders using a generalized additive model (GAM), multiple linear, binary logistic, and restricted cubic spline (RCS) regression models. Multiple sensitivity analyses were conducted to validate the results of our study. Results: Significantly lower serum concentrations of ten antioxidants were observed in the group which had trouble sleeping symptoms compared to the control group. After adjusting for all the covariates, the binary logistic regression models indicated that six of the circulating antioxidants including alpha-carotene, alpha-cryptoxanthin, trans-beta-carotene, beta-cryptoxanthin, lutein and zeaxanthin, and vitamin C, showed a significant association with the risk of overall trouble sleeping symptoms, with odds ratios corresponding to 0.88 (95% CI: 0.80-0.96), 0.74 (95% CI: 0.62-0.87), 0.87 (95% CI: 0.79-0.97), 0.85 (95% CI: 0.75-0.95), 0.72 (95% CI: 0.61-0.84), and 0.83 (95% CI: 0.74-0.93), respectively. The GAM and multiple linear regression revealed similar associations whereas the RCS regression models further confirmed their significant negative exposure-response relationship. Conclusions: The circulating carotenoids and vitamin C levels were negatively correlated with the risk of sleep disorders. Higher circulating antioxidant levels were significantly associated with a lower risk of sleep disorders. The potential health risk of low circulating antioxidants levels was higher in the female population than in the male population.

15.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 312-318, 2024 Feb 28.
Article in English, Chinese | MEDLINE | ID: mdl-38755728

ABSTRACT

Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease that is prevalent in middle-aged and elderly women, characterized by dry mouth, dry eyes, fatigue, and joint pain. Nearly one-third pSS patients have been suffering with osteoporosis (OP), displaying symptoms of lumbago, back pain, and even fracture, all of which severely affect their life quality. Common risk factors for pSS and OP include gender and age, persistent state of inflammation, immune disorders, intestinal flora imbalance, vitamin D deficiency, dyslipidemia and sarcopenia. Meanwhile, the comorbidities of pSS, such as renal tubular acidosis, primary biliary cholangitis, autoimmune thyroid diseases, and drugs (glucocorticoids, methotrexate, and cyclophosphamide) are unique risk factors for pSS complicated with OP. Education, guidance of healthy lifestyle, and OP screening are recommended for bone management of pSS patients. Early detection and intervention are crucial for keeping bone health and life quality in pSS patients.


Subject(s)
Osteoporosis , Sjogren's Syndrome , Humans , Sjogren's Syndrome/complications , Osteoporosis/etiology , Osteoporosis/complications , Risk Factors , Female , Comorbidity , Vitamin D Deficiency/complications , Quality of Life
16.
Mol Pharm ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819959

ABSTRACT

Inflammation induced by activated macrophages within vulnerable atherosclerotic plaques (VAPs) constitutes a significant risk factor for plaque rupture. Translocator protein (TSPO) is highly expressed in activated macrophages. This study investigated the effectiveness of TSPO radiotracers, 18F-FDPA, in detecting VAPs and quantifying plaque inflammation in rabbits. 18 New Zealand rabbits were divided into 3 groups: sham group A, VAP model group B, and evolocumab treatment group C. 18F-FDPA PET/CTA imaging was performed at 12, 16, and 24 weeks in all groups. Optical coherence tomography (OCT) was performed on the abdominal aorta at 24 weeks. The VAP was defined through OCT images, and ex vivo aorta PET imaging was also performed at 24 weeks. The SUVmax and SUVmean of 18F-FDPA were measured on the target organ, and the target-to-background ratio (TBRmax) was calculated as SUVmax/SUVblood pool. The arterial sections of the isolated abdominal aorta were analyzed by HE staining, CD68 and TSPO immunofluorescence staining, and TSPO Western blot. The results showed that at 24 weeks, the plaque TBRmax of 18F-FDPA in group B was significantly higher than in groups A and C. Immunofluorescence staining of CD68 and TSPO, as well as Western blot, confirmed the increased expression of macrophages and TSPO in the corresponding regions of group B. HE staining revealed an increased presence of the lipid core, multiple foam cells, and inflammatory cell infiltration in the area with high 18F-FDPA uptake. This indicates a correlation between 18F-FDPA uptake, inflammation severity, and VAPs. The TSPO-targeted tracer 18F-FDPA shows specific uptake in macrophage-rich regions of atherosclerotic plaques, making it a valuable tool for assessing inflammation in VAPs.

17.
Prep Biochem Biotechnol ; : 1-10, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648492

ABSTRACT

Coprinus comatus is an edible mushroom and its fermented product possesses antioxidant activity. In this study, to further enhance the antioxidant activity and improve the reusability of the strain, calcium alginate hydrogel was used as the carrier for embedding and immobilizing Coprinus comatus. The effects of CaCl2 concentration, sodium alginate concentration, microsphere diameter, and the amount of magnetic particle on the antioxidant activity of fermented products were investigated. The results showed that the magnetic immobilized microsphere prepared by 2.50% CaCl2, 2.00% sodium alginate and 0.50% Fe3O4 had the best fermentation antioxidant activity (EC50 was 0.43 ± 0.01 mg/mL) when the diameter was 5 mm, which increased by 24.56% compared to the initial activity. Besides, the microsphere showed strong reusability, the antioxidant activity was still better than the free strain after being used five times. This study not only enhanced the antioxidant activity of Coprinus comatus fermented product through immobilization, but also provided an effective method for microbial fermentation.

18.
World J Gastrointest Surg ; 16(3): 893-906, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38577090

ABSTRACT

BACKGROUND: Colorectal cancer is a major global health challenge that predominantly affects older people. Surgical management, despite advancements, requires careful consideration of preoperative patient status for optimal outcomes. AIM: To summarize existing evidence on the association of frailty with short-term postoperative outcomes in patients undergoing colorectal cancer surgery. METHODS: A literature search was conducted using PubMed, EMBASE and Scopus databases for observational studies in adult patients aged ≥ 18 years undergoing planned or elective colorectal surgery for primary carcinoma and/or secondary metastasis. Only studies that conducted frailty assessment using recognized frailty assessment tools and had a comparator group, comprising nonfrail patients, were included. Pooled effect sizes were reported as weighted mean difference or relative risk (RR) with 95% confidence intervals (CIs). RESULTS: A total of 24 studies were included. Compared with nonfrail patients, frailty was associated with an increased risk of mortality at 30 d (RR: 1.99, 95%CI: 1.47-2.69), at 90 d (RR: 4.76, 95%CI: 1.56-14.6) and at 1 year (RR: 5.73, 95%CI: 2.74-12.0) of follow up. Frail patients had an increased risk of any complications (RR: 1.81, 95%CI: 1.57-2.10) as well as major complications (Clavien-Dindo classification grade ≥ III) (RR: 2.87, 95%CI: 1.65-4.99) compared with the control group. The risk of reoperation (RR: 1.18, 95%CI: 1.07-1.31), readmission (RR: 1.70, 95%CI: 1.36-2.12), need for blood transfusion (RR: 1.67, 95%CI: 1.52-1.85), wound complications (RR: 1.49, 95%CI: 1.11-1.99), delirium (RR: 4.60, 95%CI: 2.31-9.16), risk of prolonged hospitalization (RR: 2.09, 95%CI: 1.22-3.60) and discharge to a skilled nursing facility or rehabilitation center (RR: 3.19, 95%CI: 2.0-5.08) was all higher in frail patients. CONCLUSION: Frailty in colorectal cancer surgery patients was associated with more complications, longer hospital stays, higher reoperation risk, and increased mortality. Integrating frailty assessment appears crucial for tailored surgical management.

19.
Front Immunol ; 15: 1369311, 2024.
Article in English | MEDLINE | ID: mdl-38601162

ABSTRACT

Background: Coronavirus disease (COVID-19), caused by SARS-CoV-2, has emerged as a infectious disease, coexisting with widespread seasonal and sporadic influenza epidemics globally. Individuals living with HIV, characterized by compromised immune systems, face an elevated risk of severe outcomes and increased mortality when affected by COVID-19. Despite this connection, the molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our research endeavors to elucidate the shared pathways and molecular markers in individuals with HIV concurrently infected with COVID-19 and influenza. Furthermore, we aim to identify potential medications that may prove beneficial in managing these three interconnected illnesses. Methods: Sequencing data for COVID-19 (GSE157103), influenza (GSE185576), and HIV (GSE195434) were retrieved from the GEO database. Commonly expressed differentially expressed genes (DEGs) were identified across the three datasets, followed by immune infiltration analysis and diagnostic ROC analysis on the DEGs. Functional enrichment analysis was performed using GO/KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened through a Protein-Protein Interaction networks (PPIs) analysis among DEGs. Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-binding proteins was conducted based on the identified hub genes. Finally, quantitative PCR (qPCR) expression verification was undertaken for selected hub genes. Results: The analysis of the three datasets revealed a total of 22 shared DEGs, with the majority exhibiting an area under the curve value exceeding 0.7. Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted signaling pathways associated with ribosomes and tumors. The ten identified hub genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL, and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide, cyclosporine) were identified. Conclusion: This research provides valuable insights into shared molecular targets, signaling pathways, drug chemicals, and potential biomarkers for individuals facing the complex intersection of COVID-19, influenza, and HIV. These findings hold promise for enhancing the precision of diagnosis and treatment for individuals with HIV co-infected with COVID-19 and influenza.


Subject(s)
COVID-19 , HIV Infections , Influenza, Human , MicroRNAs , Humans , Influenza, Human/genetics , COVID-19/genetics , SARS-CoV-2 , Computational Biology , MicroRNAs/genetics , Transcription Factors , Gene Expression Regulation , HIV Infections/drug therapy , HIV Infections/genetics
20.
Front Pharmacol ; 15: 1344113, 2024.
Article in English | MEDLINE | ID: mdl-38567351

ABSTRACT

Introduction: Diabetic kidney disease (DKD) necessitates innovative therapeutic strategies. This study delves into the role of DNA damage-inducing transcription factor 4 (DDIT4) within the VDR-mTOR pathway, aiming to identify a novel target for DKD drug discovery. Methods: Transcriptome data from the Gene Expression Omnibus Database were analyzed to assess the expression of mTOR and VDR expression in human renal tissues. Clinical samples from DKD patients and minimal change disease (MCD) controls were examined, and a DKD animal model using 20-week-old db/db mice was established. DDIT4 plasmid transfection was employed to modulate the VDR-mTOR pathway, with its components evaluated using immunohistochemistry, real-time quantitative PCR (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Results: Changes in the expression of the VDR-mTOR pathway were observed in both DKD patients and the animal model. Overexpression of DDIT4 increased VDR expression and decreased levels of mTOR, p70s6k, and 4E-BP1. Furthermore, DDIT4 treatment regulated autophagy by upregulating LC3I expression and downregulating LC3II expression. Notably, DDIT4 alleviated oxidative stress by reducing the levels of lipid peroxidation product MDA, while simultaneously increasing the levels of superoxide dismutase (SOD) and glutathione (GSH), underscoring the role of DDIT4 in the pathological process of DKD and its potential as a therapeutic target. Conclusion: Unraveling DDIT4's involvement in the VDR-mTOR pathway provides insights for innovative DKD drug discovery, emphasizing its potential as a therapeutic target for future interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...