Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 352: 141505, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387660

ABSTRACT

Chlorinated organic compounds are widely used as solvents, but they are pollutants that can have adverse effects on the environment and human health. Dissimilatory iron-reducing bacteria (DIRB) such as Shewanella and Geobacter have been applied to treat a wide range of halogenated organic compounds due to their specific biological properties. Until now, there has been no systematic review on the mechanisms of direct or indirect degradation of halogenated organic compounds by DIRB. This work summarizes the discussion of DIRB's ability to enhance the dechlorination of reaction systems through different pathways, both biological and biochemical. For biological dechlorination, some DIRB have self-dechlorination capabilities that directly dechlorinate by hydrolysis. Adjustment of dechlorination genes through genetic engineering can improve the dechlorination capabilities of DIRB. DIRB can also adjust the capacity for the microbial community to dechlorinate and provide nutrients to enhance the expression of dechlorination genes in other bacteria. In biochemical dechlorination, DIRB bioconverts Fe(III) to Fe(II), which is capable of dichlorination. On this basis, the DIRB-driven Fenton reaction can efficiently degrade chlorinated organics by continuously maintaining anoxic conditions to generate Fe(II) and oxic conditions to generate H2O2. DIRB can drive microbial fuel cells due to their electroactivity and have a good dechlorination capacity at low levels of energy consumption. The contribution of DIRB to the removal of pesticides, antibiotics and POPs is summarized. Then the DIRB electron transfer mechanism is discussed, which is core to their ability to dechlorinate. Finally, the prospect of future work on the removal of chlorine-containing organic pollutants by DIRB is presented, and the main challenges and further research directions are suggested.


Subject(s)
Environmental Pollutants , Shewanella , Humans , Iron/chemistry , Water/metabolism , Soil , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Environmental Pollutants/metabolism , Shewanella/metabolism , Ferrous Compounds/metabolism
2.
Front Pharmacol ; 14: 1240829, 2023.
Article in English | MEDLINE | ID: mdl-38125893

ABSTRACT

Introduction: Pulmonary fibrosis (PF) is a fatal chronic lung disease that causes structural damage and decreased lung function and has a poor prognosis. Currently, there is no medicine that can truly cure PF. Vitamin E (VE) is a group of natural antioxidants with anticancer and antimutagenic properties. There have been a few reports about the attenuation of PF by VE in experimental animals, but the molecular mechanisms are not fully understood. Methods: Bleomycin-induced PF (BLM-PF) mouse model, and cultured mouse primary lung fibroblasts and MLE 12 cells were utilized. Pathological examination of lung sections, immunoblotting, immunofluorescent staining, and real-time PCR were conducted in this study. Results: We confirmed that VE significantly delayed the progression of BLM-PF and increased the survival rates of experimental mice with PF. VE suppressed the pathological activation and fibrotic differentiation of lung fibroblasts and epithelial-mesenchymal transition and alleviated the inflammatory response in BLM-induced fibrotic lungs and pulmonary epithelial cells in vitro. Importantly, VE reduced BLM-induced ferritin expression in fibrotic lungs, whereas VE did not exhibit iron chelation properties in fibroblasts or epithelial cells in vitro. Furthermore, VE protected against mitochondrial dysmorphology and normalized mitochondrial protein expression in BLM-PF lungs. Consistently, VE suppressed apoptosis in BLM-PF lungs and pulmonary epithelial cells in vitro. Discussion: Collectively, VE markedly inhibited BLM-induced PF through a complex mechanism, including improving iron metabolism and mitochondrial structure and function, mitigating inflammation, and decreasing the fibrotic functions of fibroblasts and epithelial cells. Therefore, VE presents a highly potential therapeutic against PF due to its multiple protective effects with few side effects.

3.
Anal Chem ; 94(18): 6809-6818, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35485935

ABSTRACT

Bioactive peptides play important roles in various biological processes. However, the traditional methods for profiling the peptide-interacting proteins require modifications to the peptide molecules, often leading to false identifications. We found that the interaction between peptide ligands and protein receptors induced significant changes in the abundance of the interacting proteins, which is a signature indicating the interaction and providing complementary information for use in the classical thermal proteome profiling (TPP) technique. Herein, we developed a novel Peptide-ligand-induced Abundance Change of proTeinS (PACTS)-assisted TPP strategy for the identification of peptide-interacting proteins based on the peptide-ligand-induced change in protein abundance. The utility and efficacy of this approach were demonstrated by the identification of the interaction of the protein 3-phosphoinositide-dependent protein kinase 1 (PDPK1) and PDPK1-interacting fragment (PIF) pair and by large-scale profiling of the interacting proteins of PIF. The PACTS-assisted TPP approach was applied to describe the interactome of amyloid beta (Aß) 1-42 in THP-1 cells and resulted in the identification of 103 interacting proteins. Validation experiments indicated that Aß1-42 interacted directly with fatty acid synthase and inhibited its enzymatic activity, providing insights into fatty acid metabolic disorders in Alzheimer's disease (AD). Overall, PACTS-assisted TPP is an efficient approach, and the newly identified Aß-interacting proteins provide rich resources for the research on AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , 3-Phosphoinositide-Dependent Protein Kinases , Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Humans , Ligands , Peptide Fragments/metabolism , Proteome/metabolism
4.
J Contam Hydrol ; 246: 103954, 2022 04.
Article in English | MEDLINE | ID: mdl-35114497

ABSTRACT

In recent years, DNA-tagged silica colloids have been used as an environmental tracer. A major advantage of this technique is that the DNA-coding provides an unlimited number of unique tracers without a background concentration. However, little is known about the effects of physio-chemical subsurface properties on the transport behavior of DNA-tagged silica tracers. We are the first to explore the deposition kinetics of this new DNA-tagged silica tracer for different pore water chemistries, flow rates, and sand grain size distributions in a series of saturated sand column experiments in order to predict environmental conditions for which the DNA-tagged silica tracer can best be employed. Our results indicated that the transport of DNA-tagged silica tracer can be well described by first order kinetic attachment and detachment. Because of massive re-entrainment under transient chemistry conditions, we inferred that attachment was primarily in the secondary energy minimum. Based on calculated sticking efficiencies of the DNA-tagged silica tracer to the sand grains, we concluded that a large fraction of the DNA-tagged silica tracer colliding with the sand grain surface did also stick to that surface, when the ionic strength of the system was higher. The experimental results revealed the sensitivity of DNA-tagged silica tracer to both physical and chemical factors. This reduces its applicability as a conservative hydrological tracer for studying subsurface flow paths. Based on our experiments, the DNA-tagged silica tracer is best applicable for studying flow routes and travel times in coarse grained aquifers, with a relatively high flow rate. DNA-tagged silica tracers may also be applied for simulating the transport of engineered or biological colloidal pollution, such as microplastics and pathogens.


Subject(s)
Sand , Silicon Dioxide , Colloids/chemistry , DNA , Plastics , Porosity , Silicon Dioxide/chemistry
5.
Chemosphere ; 288(Pt 2): 132581, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34656624

ABSTRACT

In this study, a novel nanoscale iron oxide (FeOx) modified carbon nanotubes composite (FeOx@CNTs) was synthesized through a combined ball milling-hydrothermal two-step method and tested for aqueous Sb(III) removal efficiency and mechanisms. FeOx nanoparticles was successfully loaded on the surface of CNTs through functional groups such as hydroxyl (-OH), C-H, and C-O to enhance the removal efficiency of Sb(III) through adsorption and surface complexation. At a dosage of 0.02 g, a FeCl3·6H2O-to-CNTs mass ratio of 3:1, and an initial solution pH of 6.3, the amount of Sb(III) removed by the prepared FeOx@CNTs reached 172 mg/g, which was 42.9 times higher than that of the pristine CNTs (4.01 mg/g). Chemical adsorption and oxidation were the main removal mechanisms. At the equilibrium Sb(III) concentration of 6.08 mg/L, 6.56% of initial Sb(III) was adsorbed onto the surface of FeOx@CNTs, and 81.3% of initial Sb(III) was oxidized to Sb(V) with lower toxicity. The pseudo-second-order kinetic model could better describe the adsorption of Sb(III) onto the FeOx@CNTs composite, indicating that adsorption was mainly controlled by chemical sorption. In the adsorption isotherm equation, the Redlich-Peterson model provided a better fit of Sb(III) adsorption onto the FeOx@CNTs composite than the Langmuir and Freundlich models, which further indicated that the adsorption process was a hybrid removal process dominated by chemical sorption. The presence of CO32- slightly promoted the removal of Sb(III) from aqueous solution. The synthesized composite was magnetic and could be easily separated from the solution by an external magnetic field at the end of the sorption experiment. Based on these findings, the FeOx@CNTs nanocomposite is expected to provide an environmentally-friendly adsorbent with a strong sorption capacity for remediating Sb(III) in water environments.


Subject(s)
Nanotubes, Carbon , Antimony , Iron , Magnetic Phenomena , Water
6.
Sci Total Environ ; 780: 146517, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33770598

ABSTRACT

Leakage accidents occurring during oil production and transportation are currently one of the most serious environmental problems worldwide. Developing efficient and environmentally friendly oil-water separation methods is the key to solve this problem. In this work, a facile method to fabricate a high-performance oil absorbent through the loading of ball-milled biochar (BMBC) and octadecylamine on the skeleton of melamine foam (MF) is reported. The resulting ball-milled biochar-based MF (BMBC@MF) displayed a complex three-dimensional porous structure. The BM biochar on the surface of BMBC@MF forms nano/µm-scale folds, which reduced the surface energy of BMBC@MF after grafted octadecylamine. These structures resulted in the conversion of the hydrophilic surface of MF to hydrophobic surface. These characteristics made the modified foam an excellent oil absorbent with a high oil absorption capacity (43-155 times its own weight) and extraordinary recyclability. Furthermore, the BMBC@MF could maintain high hydrophobicity and adsorption stability in a wide pH range (from 1 to 11). More importantly, BM biochar is a cheap and readily available material to make BMBC@MF possible for large-scale production. Therefore, this work provides an effective way for low-cost, environmentally friendly, and large-scale production of superhydrophobic adsorbents for oil-water separation.


Subject(s)
Oils , Petroleum Pollution , Charcoal , Hydrophobic and Hydrophilic Interactions , Petroleum Pollution/analysis , Water
7.
Mol Biol Rep ; 47(12): 9811-9820, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33230784

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a serious life-threatening lung disease, and the median survival period of PF patients after diagnosis is only 2.5-3.5 years. At present, there are no effective drugs or therapeutics to reverse or even inhibit IPF. The main pathological characteristics of pulmonary fibrosis (PF) include damage to alveolar epithelial cells, fibroblast activation and extracellular matrix accumulation, which gradually lead to damage to the lung structure and decreased lung function. It is important to understand the cellular and molecular mechanisms of PF comprehensively and clearly. In this paper, critical signaling pathways related to PF were reviewed to present updates on the molecular mechanisms of PF.


Subject(s)
Alveolar Epithelial Cells , Idiopathic Pulmonary Fibrosis , Signal Transduction , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Animals , Cell Line , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...