Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Biol Lett ; 29(1): 43, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539084

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are single-stranded RNAs with covalently closed structures that have been implicated in cancer progression. However, the regulatory mechanisms remain largely unclear. So, the aim of this study was to reveal the role and regulatory mechanisms of circ-SLC16A1. METHODS: In this study, next-generation sequencing was used to identify abnormally expressed circRNAs between cancerous and para-carcinoma tissues. Fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction were performed to assess the expression patterns of circ-solute carrier family 16 member 1 (SLC16A1) in non-small cell lung cancer (NSCLC) cells and tissue specimens. The dual-luciferase reporter assay was utilized to identify downstream targets of circ-SLC16A1. Transwell migration, wound healing, 5-ethynyl-2'-deoxyuridine incorporation, cell counting, and colony formation assays were conducted to assess the proliferation and migration of NSCLC cells. A mouse tumor xenograft model was employed to determine the roles of circ-SLC16A1 in NSCLC progression and metastasis in vivo. RESULTS: The results found that circ-SLC16A1 was upregulated in NSCLC cells and tissues. Downregulation of circ-SLC16A1 inhibited tumor growth by reducing proliferation, lung metastasis, and lymphatic metastasis of NSCLC cells, and arrested the cell cycle in the G1 phase. Also, silencing of circ-SLC16A1 promoted apoptosis of NSCLC cells. The results of bioinformatics analysis and the dual-luciferase reporter assay confirmed that microRNA (miR)-1287-5p and profilin 2 (PFN2) are downstream targets of circ-SLC16A1. PFN2 overexpression or circ-SLC16A1 inhibition restored proliferation and migration of NSCLC cells after silencing of circ-SLC16A1. PFN2 overexpression restored migration and proliferation of NSCLC cells post miR-1287-5p overexpression. CONCLUSIONS: Collectively, these findings show that miR-1287-5p/PFN2 signaling was associated with downregulation of circ-SLC16A1 and reduced invasion and proliferation of NSCLC cells. So, circ-SLC16A1 is identified as a mediator of multiple pro-oncogenic signaling pathways in NSCLC and can be targeted to suppress tumor progression.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , In Situ Hybridization, Fluorescence , Luciferases , Lung Neoplasms/genetics , MicroRNAs/genetics , Profilins , RNA, Circular/genetics
2.
Cancer Cell Int ; 24(1): 91, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429830

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) belong to a class of covalently closed single stranded RNAs that have been implicated in cancer progression. Former investigations showed that hsa-circ-0013561 is abnormally expressed in head and neck squamous cell carcinoma (HNSCC). Nevertheless, the role of hsa-circ-0013561 during the progress of HNSCC still unclear. METHODS: Present study applied FISH and qRT-PCR to examine hsa-circ-0013561 expression in HNSCC cells and tissue samples. Dual-luciferase reporter assay was employed to identify downstream targets of hsa-circ-0013561. Transwell migration, 5-ethynyl-2'-deoxyuridine incorporation, CCK8 and colony formation assays were utilized to test cell migration and proliferation. A mouse tumor xenograft model was utilized to determine the hsa-circ-0013561 roles in HNSCC progression and metastasis in vivo. RESULTS: We found that hsa-circ-0013561 was upregulated in HNSCC tissue samples. hsa-circ-0013561 downregulation inhibited HNSCC cell proliferation and migration to promote apoptosis and G1 cell cycle arrest. The dual-luciferase reporter assay revealed that miR-7-5p and PDK3 are hsa-circ-0013561 downstream targets. PDK3 overexpression or miR-7-5p suppression reversed the hsa-circ-0013561-induced silencing effects on HNSCC cell proliferation and migration. PDK3 overexpression reversed miR-7-5p-induced effects on HNSCC cell proliferation and migration. CONCLUSION: The findings suggest that hsa-circ-0013561 downregulation inhibits HNSCC metastasis and progression through PDK3 expression and miR-7-5p binding modulation.

3.
Endocrine ; 76(3): 660-670, 2022 06.
Article in English | MEDLINE | ID: mdl-35366156

ABSTRACT

BACKGROUND: Mutations in DNA mismatch repair (MMR) genes associated with thyroid carcinoma (TC) have rarely been reported, especially in East Asian populations. METHODS: We examined tumor tissue from a cohort of 241 patients diagnosed with TC between 2008 and 2020. MMR proteins were detected using tissue microarray-based immunohistochemistry in order to identify MMR-protein-deficient (MMR-D) and MMR-protein-intact (MMR-I) tumors. We retrospectively summarized the clinicopathologic characteristics of patients with MMR-D TC, measured the expression of PD-L1, and recorded overall survival (OS) and other clinical outcomes. RESULTS: In our cohort, there were 18 (7.5%) MMR-D (MLH1, MSH2, MSH6, and PMS2) patients, including 12 with papillary TC (PTC) (6.7%), 2 with poorly differentiated TC (PDTC) (4.7%), and 4 with anaplastic TC (ATC) (22.2%). Half of them (9/18) showed a specific deletion in MSH6, and 6 of them also carried variants in the MSH6 and PMS2 gene. Survival was significantly better in patients with MMR-D ATC than in those with MMR-I tumors (p = 0.033). Four of the 18 MMR-D patients (22%) were found to be PD-L1 positive. Their OS was much shorter than that of PD-L1-negative patients. CONCLUSIONS: MMR-D and PD-L1 positivity appear to be associated with clinicopathological characteristics and prognosis in TC. The results indicate that MMR status may have important prognostic significance in TC. Therefore, immune checkpoint inhibitors that target the PD-1/PD-L1 pathway may be a treatment option for TCs.


Subject(s)
B7-H1 Antigen , Thyroid Neoplasms , B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Humans , Mismatch Repair Endonuclease PMS2/genetics , Retrospective Studies , Thyroid Neoplasms/genetics
4.
Biomed Res Int ; 2021: 9968499, 2021.
Article in English | MEDLINE | ID: mdl-34901284

ABSTRACT

Recently, circular RNAs have been shown to function as critical regulators of many human cancers. However, the circRNA mechanism in laryngeal squamous cell carcinoma (LSCC) remains elusive. Recent investigations using bioinformatics analysis revealed high expression of hsa_circ_0023305 in LSCC tissues compared to normal tissues. Furthermore, we discovered that hsa_circ_0023305 expression level was positively correlated to tumor/node/metastasis (TNM) stage as well as lymph node metastasis in LSCC. Moreover, higher hsa_circ_0023305 levels were correlated to poorer LSCC patient outcomes. Knockdown of hsa_circ_0023305 significantly inhibited LSCC cell proliferation, invasion, and migration abilities. Our team validated that hsa_circ_0023305 functioned as a miR-218-5p sponge from a mechanistic perspective, targeting the melastatin-related transient receptor potential 7 (TRPM7) in LSCC cells. TRPM7 regulates a nonselective cation channel and promotes cancer proliferation and metastasis. Our data demonstrated that miR-218-5p was downregulated in LSCC and that miR-218-5p upregulation repressed LSCC proliferation and invasion both in vivo and in vitro. Additionally, we found that hsa_circ_0023305-mediated upregulation of TRPM7 inhibited miR-218-5p and contributed to LSCC migration, proliferation, and invasion. In summary, these data propose a new mechanism by which the hsa_circ_0023305/miR-218-5p/TRPM7 network enhances LSCC progression.


Subject(s)
Laryngeal Neoplasms/genetics , MicroRNAs/genetics , Protein Serine-Threonine Kinases/genetics , RNA, Circular/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , TRPM Cation Channels/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Laryngeal Neoplasms/pathology , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Mice , Squamous Cell Carcinoma of Head and Neck/pathology , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...