Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Vet Res ; 55(1): 28, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38449049

ABSTRACT

The prevalence of porcine reproductive and respiratory syndrome virus 1 (PRRSV1) isolates has continued to increase in Chinese swine herds in recent years. However, no effective control strategy is available for PRRSV1 infection in China. In this study, we generated the first infectious cDNA clone (rHLJB1) of a Chinese PRRSV1 isolate and subsequently used it as a backbone to construct an ORF2-6 chimeric virus (ORF2-6-CON). This virus contained a synthesized consensus sequence of the PRRSV1 ORF2-6 gene encoding all the envelope proteins. The ORF2-6 consensus sequence shared > 90% nucleotide similarity with four representative strains (Amervac, BJEU06-1, HKEU16 and NMEU09-1) of PRRSV1 in China. ORF2-6-CON had replication efficacy similar to that of the backbone rHLJB1 virus in primary alveolar macrophages (PAMs) and exhibited cell tropism in Marc-145 cells. Piglet inoculation and challenge studies indicated that ORF2-6-CON is not pathogenic to piglets and can induce enhanced cross-protection against a heterologous SD1291 isolate. Notably, ORF2-6-CON inoculation induced higher levels of heterologous neutralizing antibodies (nAbs) against SD1291 than rHLJB1 inoculation, which was concurrent with a higher percentage of T follicular helper (Tfh) cells in tracheobronchial lymph nodes (TBLNs), providing the first clue that porcine Tfh cells are correlated with heterologous PRRSV nAb responses. The number of SD1291-strain-specific IFNγ-secreting cells was similar in ORF2-6-CON-inoculated and rHLJB1-inoculated pigs. Overall, our findings support that the Marc-145-adapted ORF2-6-CON can trigger Tfh cell and heterologous nAb responses to confer improved cross-protection and may serve as a candidate strain for the development of a cross-protective PRRSV1 vaccine.


Subject(s)
Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , T Follicular Helper Cells , Antibodies, Neutralizing , China , Consensus Sequence
2.
Microbiol Spectr ; 12(3): e0347923, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38299833

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus with constantly emerging recombinant and mutant strains. Because of the high genetic diversity of PRRSV, current vaccines only provide partial protection against the infection of heterologous strains, which makes it a challenge for PRRSV prevention and control. Tubercidin is a naturally extracted compound with potential antiviral properties. However, whether tubercidin has anti-PRRSV ability is unknown. Our study found that tubercidin showed effective antiviral effects on PRRSV replication. In terms of mechanism, tubercidin suppressed PRRSV at the entry, replication, and release steps of the viral life cycle. Additionally, we demonstrated that tubercidin treatment promoted the activation of retinoic acid-inducible gene I and nuclear factor kappa-light-chain-enhancer of activated B cell signaling pathway, thus increasing the type I interferon and inflammatory cytokine expression. Furthermore, tubercidin restrained the viral non-structural protein 2 expression and viral dsRNA synthesis and ultimately inhibited PRRSV replication. Hence, our data showed that tubercidin is promising and has potential antiviral ability against PRRSV replication in vitro. IMPORTANCE: Porcine reproductive and respiratory syndrome (PRRS) is one of the most important swine diseases, which causes huge economic loss worldwide. However, there is no effective therapeutic method for PRRS prevention and control. Here, we found that tubercidin, a naturally extracted adenosine analog, exhibited strong anti-porcine reproductive and respiratory syndrome virus (PRRSV) activity. Mechanically, tubercidin inhibited viral binding, replication, and release. Tubercidin suppressed PRRSV non-structural protein 2 expression, which is important for the formation of replication and transcription complex, leading to the block of viral RNA synthesis and PRRSV replication. Moreover, tubercidin could activate retinoic acid-inducible gene I/nuclear factor kappa-light-chain-enhancer of activated B cell innate immune signaling pathway and increased the expression of interferons and proinflammatory cytokines, which was the other way to inhibit PRRSV replication. Our work evaluated the potential value of tubercidin as an antiviral agent on PRRSV replication and provided a new way to prevent PRRSV replication in vitro.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Porcine respiratory and reproductive syndrome virus/metabolism , NF-kappa B/metabolism , Tubercidin , Cytokines/metabolism , DEAD Box Protein 58 , Antiviral Agents/pharmacology , Tretinoin
3.
Vaccines (Basel) ; 12(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38250878

ABSTRACT

Infection of pigs with the pseudorabies virus (PRV) causes significant economic losses in the pig industry. Immunization with live vaccines is a crucial aspect in the prevention of pseudorabies in swine. The TK/gE/gI/11k/28k deleted pseudorabies vaccine is a promising alternative for the eradication of epidemic pseudorabies mutant strains. This study optimized the lyophilization of a heat-resistant PRV vaccine to enhance the quality of a live vaccine against the recombinant PRV rHN1201TK-/gE-/gI-/11k-/28k-. The A4 freeze-dried protective formulation against PRV was developed by comparing the reduction in virus titer after lyophilization and after seven days of storage at 37 °C. The formulation contains 1% gelatin, 5% trehalose, 0.5% poly-vinylpyrimidine (PVP), 0.5% thiourea, and 1% sorbitol. The A4 freeze-dried vaccine demonstrated superior protection and thermal stability. It experienced a freeze-dried loss of 0.31 Lg post-freeze-drying and a heat loss of 0.42 Lg after being stored at a temperature of 37 °C for 7 consecutive days. The A4 freeze-dried vaccine was characterized through XRD, FTIR, and SEM analyses, which showed that it possessed an amorphous structure with a consistent porous interior. The trehalose component of the vaccine formed stable hydrogen bonds with the virus. Long-term and accelerated stability studies were also conducted. The A4 vaccine maintained viral titer losses of less than 1.0 Lg when exposed to 25 °C for 90 days, 37 °C for 28 days, and 45 °C for 7 days. The A4 vaccine had a titer loss of 0.3 Lg after storage at 2-8 °C for 24 months, and a predicted shelf life of 6.61 years at 2-8 °C using the Arrhenius equation. The A4 freeze-dried vaccine elicited no side effects when used to immunize piglets and produced specific antibodies. This study provides theoretical references and technical support to improve the thermal stability of recombinant PRV rHN1201TK-/gE-/gI-/11k-/28k- vaccines.

4.
Viruses ; 15(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37766372

ABSTRACT

Pseudorabies virus (PRV) variants were discovered in immunized pigs in Northern China and have become the dominant strains since 2011, which caused huge economic losses. In this study, a classical PRV strain was successfully isolated in a PRV gE positive swine farm. The complete genome sequence was obtained using a high-throughput sequencing method and the virus was named JS-2020. The nucleotide homology analysis and phylogenetic tree based on complete genome sequences or gC gene showed that the JS-2020 strain was relatively close to the classical Ea strain in genotype II clade. However, a large number of amino acid variations occurred in the JS-2020 strain compared with the Ea strain, including multiple immunogenic and virulence-related genes. In particular, the gE protein of JS-2020 was similar to earlier Chinese PRV strains without Aspartate insertion. However, the amino acid variations analysis based on major immunogenic and virulence-related genes showed that the JS-2020 strain was not only homologous with earlier PRV strains, but also with strains isolated in recent years. Moreover, the JS-2020 strain was identified as a recombinant between the GXGG-2016 and HLJ-2013 strains. The pathogenicity analysis proved that the PRV JS-2020 strain has typical neurogenic infections and a strong pathogenicity in mice. Together, a novel recombinant classical strain was isolated and characterized in the context of the PRV variant pandemic in China. This study provided some valuable information for the study of the evolution of PRV in China.

5.
Vet Microbiol ; 285: 109847, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37625255

ABSTRACT

Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) has been prevalent in more than 20 provinces of China. However, no PRRSV-1-specific vaccine is commercially available in China. To evaluate the feasibility of using a low virulent PRRSV-1 isolate against potential outbreaks caused by virulent Chinese PRRSV-1 isolates, here we evaluated the efficacy of a low virulent PRRSV-1 HLJB1 strain isolated in 2014 as live vaccine against a virulent PRRSV-1 SD1291 strain isolated in 2022. Genome-based phylogenetic analysis showed that both HLJB1 and SD1291 were grouped within BJEU06-1-like isolates. However, they shared only 85.27% genomic similarity. Piglet inoculation and challenge study showed that HLJB1 inoculation could reduce viremia but did not significantly alleviate clinical signs and tissue lesions. Virus neutralization test indicated that HLJB1 inoculation could induce homologous neutralizing antibodies (NAbs) but no heterologous NAbs at 42 dpi. In addition, flow cytometric analyses showed that no memory T follicular helper (Tfh) cells against SD1291 and SD1291-specific IFN-γ secreting cells were induced by HLJB1 pre-inoculation. These results supported that HLJB1 inoculation only provides partial cross-protection against SD1291 infection even though they are clustered within the same PRRSV-1 subgroup, which is closely related to the failure in conferring cross-protective adaptive immune responses.

6.
Microbiol Resour Announc ; 12(9): e0001423, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37594280

ABSTRACT

We report here the complete genome sequence of porcine epidemic diarrhea virus (PEDV) strain SDTA13-2020, isolated from a suckling piglet with watery diarrhea in Shandong, China. The isolate is genetically close to other recent Chinese G2 genotype PEDVs and distinct from the classical PEDVs.

7.
Microbiol Resour Announc ; 12(7): e0009423, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37272823

ABSTRACT

Porcine parvovirus (PPV) strain BJ2 was isolated from a pig with symptoms consistent with PPV in Beijing, China. The analysis showed that the PPV genome sequence has the characteristics of a German cluster 27a strain and the virulent Kreese strain, which will facilitate understanding of the prevalence of PPV in China.

8.
Microb Pathog ; 180: 106158, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37201637

ABSTRACT

PRRSV-1 has caused more clinical infections in pigs in Chinese swine herds in recent years, however, the pathogenicity of PRRSV-1 in China is unclear. In order to study the pathogenicity of PRRSV-1, in this study, a PRRSV-1 strain, 181187-2, was isolated in primary alveolar macrophage (PAM) cells from a farm where abortions had been reported in China. The complete genome of 181187-2 was 14932 bp excluding Poly A, with 54-amino acid continuous deletion in the Nsp2 gene and 1 amino deletion in ORF3 gene compared with LV. Additionally, the piglets inoculated with strain 181187-2 by intranasal and intranasal plus intramuscular injection, animal experiments showed clinical symptoms including transient fever and depression, with no death. The obvious histopathological lesions including interstitial pneumonia and lymph node hemorrhage, and there were no significant differences in clinical symptoms and histopathological lesions with different challenge ways. Our results indicated that PRRSV -1 181187-2 was a moderately pathogenic strain in piglets.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Virulence , Amino Acid Sequence , Genome, Viral , Phylogeny , China
9.
J Biol Chem ; 299(7): 104844, 2023 07.
Article in English | MEDLINE | ID: mdl-37209818

ABSTRACT

Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs are regulated by different stimulators including viral infection, which is involved in the antiviral activity of host cells to limit viral propagation. To survive, several viruses have been reported to execute various strategies, such as modulating SG formation, to create optimal surroundings for viral replication. African swine fever virus (ASFV) is one of the most notorious pathogens in the global pig industry. However, the interplay between ASFV infection and SG formation remains largely unknown. In this study, we found that ASFV infection inhibited SG formation. Through SG inhibitory screening, we found that several ASFV-encoded proteins are involved in inhibition of SG formation. Among them, an ASFV S273R protein (pS273R), the only cysteine protease encoded by the ASFV genome, significantly affected SG formation. ASFV pS273R interacted with G3BP1 (Ras-GTPase-activating protein [SH3 domain] binding protein 1), a vital nucleating protein of SG formation. Furthermore, we found that ASFV pS273R cleaved G3BP1 at the G140-F141 to produce two fragments (G3BP1-N1-140 and G3BP1-C141-456). Interestingly, both the pS273R-cleaved fragments of G3BP1 lost the ability to induce SG formation and antiviral activity. Taken together, our finding reveals that the proteolytic cleavage of G3BP1 by ASFV pS273R is a novel mechanism by which ASFV counteracts host stress and innate antiviral responses.


Subject(s)
African Swine Fever Virus , Stress Granules , Viral Proteins , Animals , African Swine Fever/metabolism , African Swine Fever/virology , African Swine Fever Virus/enzymology , African Swine Fever Virus/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Stress Granules/metabolism , Swine , Virus Replication/physiology , Chlorocebus aethiops , Humans , HEK293 Cells , Cells, Cultured , Macrophages, Alveolar/virology , Viral Proteins/metabolism , Proteolysis
10.
Viruses ; 15(2)2023 02 19.
Article in English | MEDLINE | ID: mdl-36851786

ABSTRACT

African swine fever (ASF) causes high morbidity and mortality of both domestic pigs and wild boars and severely impacts the swine industry worldwide. ASF virus (ASFV), the etiologic agent of ASF epidemics, mainly infects myeloid cells in swine mononuclear phagocyte system (MPS), including blood-circulating monocytes, tissue-resident macrophages, and dendritic cells (DCs). Since their significant roles in bridging host innate and adaptive immunity, these cells provide ASFV with favorable targets to manipulate and block their antiviral activities, leading to immune escape and immunosuppression. To date, vaccines are still being regarded as the most promising measure to prevent and control ASF outbreaks. However, ASF vaccine development is delayed and limited by existing knowledge gaps in viral immune evasion, pathogenesis, etc. Recent studies have revealed that ASFV can employ diverse strategies to interrupt the host defense mechanisms via abundant self-encoded proteins. Thus, this review mainly focuses on the antagonisms of ASFV-encoded proteins towards IFN-I production, IFN-induced antiviral response, NLRP3 inflammasome activation, and GSDMD-mediated pyroptosis. Additionally, we also make a brief discussion concerning the potential challenges in future development of ASF vaccine.


Subject(s)
African Swine Fever , Animals , Swine , Immune Evasion , Monocytes , Adaptive Immunity , Antiviral Agents , Sus scrofa
11.
Animals (Basel) ; 12(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36496909

ABSTRACT

To analyze the evolutionary characteristics of the highly contagious porcine epidemic diarrhea virus (PEDV) at the molecular and structural levels, we analyzed the complete genomes of 647 strains retrieved from the GenBank database. The results showed that the spike (S) gene exhibited larger dS (synonymous substitutions per synonymous site) values than other PEDV genes. In the selective pressure analysis, eight amino acid (aa) sites of the S protein showed strong signals of positive selection, and seven of them were located on the surface of the S protein (S1 domain), suggesting a high selection pressure of S protein. Topologically, the S gene is more representative of the evolutionary relationship at the genome-wide level than are other genes. Structurally, the evolutionary pattern is highly S1 domain-related. The haplotype networks of the S gene showed that the strains are obviously clustered geographically in the lineages corresponding to genotypes GI and GII. The alignment analysis on representative strains of the main haplotypes revealed three distinguishable nucleic acid sites among those strains, suggesting a putative evolutionary mechanism in PEDV. These findings provide several new fundamental insights into the evolution of PEDV and guidance for developing effective prevention countermeasures against PEDV.

12.
Front Microbiol ; 13: 1018748, 2022.
Article in English | MEDLINE | ID: mdl-36262323

ABSTRACT

Immunoglobulin A (IgA) of sows is critically important for assessing piglets' protective capacity against porcine epidemic diarrhea virus (PEDV). Here, we report a therapeutic chimeric anti-PEDV IgG/IgA expressed by Chinese hamster ovary (CHO) cells for oral treatment of PED. The chimeric anti-PEDV IgG/IgA was produced by the CHO cell lines, in which the heavy chain was constructed by combining the VH, Cγ1 and hinge regions of PEDV IgG mAb 8A3, and the Cα2 and Cα3 domains of a Mus musculus immunoglobulin alpha chain. The chimeric anti-PEDV IgG/IgA could neutralize the strains of CV777 (G1), P014 (G2) and HN1303 (G2) in vitro effectively, showing broad-spectrum neutralization activity. The in vivo challenge experiments demonstrated that chimeric anti-PEDV IgG/IgA (9C4) produced in the CHO cell supernatant could alleviate clinical diarrhea symptoms of the PEDV infection in piglets. In general, our study showed that chimeric anti-PEDV IgG/IgA produced from CHO cell line supernatants effectively alleviates PEDV infection in piglets, which also gives the foundation for the construction of fully functional secretory IgA by the J chain introduction to maximize the antibody therapeutic effect.

13.
Front Cell Infect Microbiol ; 12: 912108, 2022.
Article in English | MEDLINE | ID: mdl-35959367

ABSTRACT

Pseudorabies caused by pseudorabies virus (PRV) infection is still a major disease affecting the pig industry; its eradication depends on effective vaccination and antibody (Ab) detection. For a more rapid and accurate PRV detection method that is suitable for clinical application, here, we established a poly(dimethylsiloxane)-based (efficient removal of non-specific binding) solid-phase protein chip platform (blocking ELISA) for dual detection of PRV gD and gE Abs. The purified gD and gE proteins expressed in baculovirus were coated into the highly hydrophobic nanomembrane by an automatic spotter, and the gray values measured by a scanner were used for the S/N (sample/negative) value calculation (gD and gE Abs standard, positive: S/N value ≤0.6; negative: S/N value >0.7; suspicious: 0.6 < S/N ≤ 0.7). The method showed an equal sensitivity in the gD Ab test of immunized pig serum samples compared to the neutralization test and higher sensitivity in the gE Ab test compared to the commercial gE Ab detection kit. In the clinical evaluation, we found an agreement of 100% (122/122) in the gD Ab detection compared to the neutralization test and an agreement of 97.5% (119/122) in the gE Ab detection compared to the commercial PRV gE Ab detection kit. In summary, the protein chip platform for dual detection of PRV gD and gE Abs showed high sensitivity and specificity, which is suitable for PRV immune efficacy evaluation and epidemic monitoring.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Swine Diseases , Animals , Antibodies, Viral , Dimethylpolysiloxanes , Pseudorabies/diagnosis , Pseudorabies/prevention & control , Swine , Swine Diseases/diagnosis , Viral Envelope Proteins
14.
Microbiol Spectr ; 10(4): e0154122, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35766496

ABSTRACT

NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) has been reported to be prevalent in China since 2018 and became one of the main epidemic strains in some areas of China. Yet, the pathogenicity of NADC34-like PRRSV tested by experimental infection has seldomly been investigated. In this study, we infected pigs with JS2021NADC34 PRRSV, a Chinese NADC34-like PRRSV isolated in Jiangsu province in 2021, to study the pathogenicity of this virus strain. Pigs infected with this virus had lasting fever and reduced body weight with high morbidity and mortality. Histopathological changes, including interstitial pneumonia, lymphocyte depletion, acute hemorrhage, and infiltration of neutrophils in the lymphoid tissues, were observed with the viral proteins detected by immunohistochemistry staining using PRRSV-specific antibody. These results suggested that JS2021NADC34 PRRSV is highly pathogenic to pigs. As it is the latest emerging PRRSV strain in China, the prevalence and pathogenicity of NADC34-like PRRSV need to be further investigated. IMPORTANCE NADC34 PRRSV was initially reported in the United States in 2018. Subsequently, this virus strain spread to other countries, including Peru, South Korea, and China. The virus was first found circulating in Northeast China and then spread to more than 10 provinces in China. NADC34 PRRSV causes severe abortion of sows and high mortality of piglets, which lead to huge economic losses to the Chinese pig industry. However, the pathogenicity of NADC34 PRRSV was rarely experimentally evaluated on pigs. In this study, pigs were infected with JS2021NADC34 PRRSV, a Chinese NADC34-like PRRSV isolated in Jiangsu province in 2021. The infected pigs had lasting fever and reduced body weight with high morbidity and mortality. Interstitial pneumonia, lymphocyte depletion, acute hemorrhage, and infiltration of neutrophils were observed in the lymphoid tissues, and high virus load was proved by immunohistochemistry staining. The above results indicated that NADC34 PRRSV has high pathogenicity on pigs.


Subject(s)
Lung Diseases, Interstitial , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Antibodies, Viral , Body Weight , Female , Phylogeny , Porcine respiratory and reproductive syndrome virus/genetics , Swine , Virulence
15.
AMB Express ; 12(1): 76, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35705721

ABSTRACT

Canine parvovirus-2 (CPV-2) infection causes serious multisystemic disease in dogs and many animal species worldwide. Previously, a monoclonal antibody (MAb) of CPV-2, 10H4, showed high neutralizing activity and therapeutic effect against CPV-2 in dogs. However, the application of mouse MAb is limited in other animals due to immune rejection. Here, the variable regions of the heavy and light chains of 10H4 were cloned and ligated with constant canine antibody regions to produce a canine-derived chimeric MAb 11D9, in a CHO-S cell expression system. The cell supernatant of the CHO cell line 11D9 exhibited a HI titer of 1:2560 against all the variants of CPV-2 (new CPV-2a, new CPV-2b, and CPV-2c), and had the same average neutralization titer as the new CPV-2a (1:11,046.5) and new CPV-2b (1:11,046.5) variants, which was slightly higher than that of CPV-2c variants (1:10,615.7). In animal experiment, the treatment of chimeric MAb 11D9 had a high therapeutic effect in beagles infected with the new CPV-2a. Overall, the canine-derived chimeric MAb 11D9 produced by CHO-S cells showed a high HI and neutralization titer against CPV-2 and the therapeutic effects against the new CPV-2a in beagles, providing potential for the prevention or treatment of CPV-2 infections in dogs.

16.
Sci Rep ; 12(1): 4989, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484134

ABSTRACT

Feline herpesvirus type 1 (FHV-1) is a common causative agent of domestic cats' rhinotracheitis in domestic cats, and it increasingly threatens wild felids worldwide. The endangered snow leopard (Panthera uncia) belongs to the family Felidae, and it is the top predator on the Tibetan Plateau. Here we report the identification and isolation of FHV-1 from three dead captive snow leopards that presented with sneezing and rhinorrhea. To explore the relationship between FHV-1 and their deaths, organs and nasal swabs were collected for histopathology, viral isolation and sequence analysis. The results revealed that all three snow leopards were infected with FHV-1. The first animal died primarily of cerebral infarction and secondary non-suppurative meningoencephalitis that was probably caused by FHV-1. The second animal died mainly of renal failure accompanied by interstitial pneumonia caused by FHV-1. The cause of death for the third animal was likely related to the concurrent reactivation of a latent FHV-1 infection. The gD and gE gene sequence alignment of the isolated FHV-1 isolate strain revealed that the virus likely originated from a domestic cat. It was found that FHV-1 infection can cause different lesions in snow leopards than in domestic cats and is associated with high risk of disease in wild felids. This suggests that there should be increased focus on protecting wild felids against FHV-1 infections originating from domestic cats.


Subject(s)
Felidae , Herpesviridae Infections , Panthera , Varicellovirus , Animals , Cats , Felidae/physiology , Herpesviridae Infections/veterinary , Varicellovirus/genetics
17.
Front Vet Sci ; 9: 819217, 2022.
Article in English | MEDLINE | ID: mdl-35280142

ABSTRACT

The egg-drop syndrome '76 (EDS '76) caused by duck atadenovirus A (DAdV-1) infection in laying hens leads to the decrease in egg production, causing heavy economic losses in the poultry industry; thus, vaccines with high safety and immunogenicity are needed. In this study, the DAdV-1 fiber protein expressed in Escherichia coli with codon optimization showed the hemagglutination (HA) titer of 13 log2 after purification (0.6 mg/mL). Compared with inactivated EDS '76 vaccine, the specific pathogen-free chickens immunized with 0.4 mL fiber protein (HA titer of 11 log2) induced an equal level of HA inhibition (HI) titer and neutralizing antibodies. Meanwhile, after immunization with fiber protein, the lowest HI titer that could provide the effect to reduce egg production rate in laying hens after the challenge was 7 log2. Moreover, fiber protein with an HA titer of 7 log2 could induce an HI titer no <7 log2 in laying hens, which was equal to or higher than the lowest HI titer (7 log2) that could reduce egg production against DAdV-1 infection significantly, indicating that it is economically feasible for vaccine development. Importantly, the HI antibodies maintained at a high level up to 180 days postimmunization contribute to the clinical application of the vaccine candidate. Overall, the fiber protein produced in E. coli is an effective subunit vaccine candidate in EDS '76 control for its high immunogenicity and protection in chickens.

18.
Microbiol Spectr ; 10(2): e0257421, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35315711

ABSTRACT

G2 porcine epidemic diarrhea virus (G2 PEDV) and highly pathogenic porcine reproductive and respiratory syndrome virus 2 (HP-PRRSV2) are two of the most prevalent swine pathogens in China's swine herds, and their coinfection occurs commonly. Several PED and PRRS vaccines have been utilized in China for decades, and systemic homologous neutralizing antibodies (shnAbs) in serum are frequently used to evaluate the protective efficacy of PED and PRRS vaccines. To develop a vaccine candidate against G2 PEDV and HP-PRRSV2 coinfection, in this study, we generated a chimeric virus (rJSTZ1712-12-S) expressing S protein of G2 PEDV using an avirulent HP-PRRSV2 rJSTZ1712-12 infectious clone as the viral vector. The rJSTZ1712-12-S strain has similar replication efficacies as the parental rJSTZ1712-12 virus. In addition, animal inoculation indicated that rJSTZ1712-12-S is not pathogenic to piglets and can induce shnAbs against both G2 PEDV and HP-PRRSV2 isolates after prime-boost immunization. However, passive transfer study in neonatal piglets deprived of sow colostrum showed that rJSTZ1712-12-S-induced shnAbs may only decrease PEDV and PRRSV viremia but cannot confer sufficient protection against dual challenge of high virulent G2 PEDV XJ1904-34 strain and HP-PRRSV2 XJ17-5 isolate. Overall, this study provides the first evidence that shnAbs confer insufficient protection against PEDV and PRRSV coinfection and are inadequate for the evaluation of protective efficacy of PED and PRRS bivalent vaccine (especially for the PED vaccine). IMPORTANCE Porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) coinfection occurs commonly and can synergistically reduce feed intake and pig growth. Vaccination is an effective strategy utilized for PED and PRRS control, and systemic homologous neutralizing antibodies (shnAbs) in serum are commonly used for protective efficacy evaluation of PED and PRRS vaccines. Currently, no commercial vaccine is available against PEDV and PRRSV coinfection. This study generated a chimeric vaccine candidate against the coinfection of prevalent PEDV and PRRSV in China. The chimeric strain can induce satisfied shnAbs against both PEDV and PRRSV after prime-boost inoculation in pigs. But the shnAbs cannot confer sufficient protection against PEDV and PRRSV coinfection in neonatal piglets. To the best of our knowledge, these findings provide the first evidence that shnAbs confer insufficient protection against PEDV and PRRSV coinfection and are inadequate for evaluating PED and PRRS bivalent vaccine protective efficacy.


Subject(s)
Coinfection , Porcine Reproductive and Respiratory Syndrome , Porcine epidemic diarrhea virus , Porcine respiratory and reproductive syndrome virus , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , Coinfection/prevention & control , Coinfection/veterinary , Female , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine respiratory and reproductive syndrome virus/genetics , Swine , Vaccines, Combined
20.
Natl Sci Rev ; 8(3): nwaa291, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34676095

ABSTRACT

Minks are raised in many countries and have transmitted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans. However, the biologic properties of SARS-CoV-2 in minks are largely unknown. Here, we investigated and found that SARS-CoV-2 replicates efficiently in both the upper and lower respiratory tracts, and transmits efficiently in minks via respiratory droplets; pulmonary lesions caused by SARS-CoV-2 in minks are similar to those seen in humans with COVID-19. We further found that a spike protein-based subunit vaccine largely prevented SARS-CoV-2 replication and lung damage caused by SARS-CoV-2 infection in minks. Our study indicates that minks are a useful animal model for evaluating the efficacy of drugs or vaccines against COVID-19 and that vaccination is a potential strategy to prevent minks from transmitting SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...