Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Article in English | MEDLINE | ID: mdl-38752639

ABSTRACT

BACKGROUND: Synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome is a rare disease that is characterized by autoinflammatory lesions on both bones and skin. The diverse manifestations and limited understanding of its etiology have hindered the diagnosis and treatment of this condition. SAPHO syndrome is also classified as a primary inflammatory osteitis. The onset of osteoarticular involvement in this disease is typically gradual, and the identification of associated biomarkers may be crucial for accurate diagnosis, effective treatment, and a better understanding of its underlying mechanisms. METHODS: We enrolled a total of 6 SAPHO patients and 3 healthy volunteers for this study. The miRNA expression profile in circulating exosomes was analyzed using next-generation sequencing. A total of 45 miRNAs were found to be differentially expressed in SAPHO patients. Linear discriminant analysis effect size analysis and Wilcoxon rank-sum test were employed to identify biomarkers based on these differentially expressed miRNAs. Among them, we selected 4 miRNAs as biomarkers for SAPHO syndrome, resulting in an area under the receiver operating characteristic curve of 1. RESULTS: The differentially expressed miRNAs indicated enrichment in immune system and endocrine system-related KEGG pathways, as well as infectious diseases and cancers. Furthermore, the most significantly enriched molecular functions in GO analysis were protein binding and catalytic activity. CONCLUSION: The exosomal miRNA profile in SAPHO syndrome exhibited significant changes, suggesting its potential as a candidate biomarker for diagnostic assistance, although further investigation is warranted to elucidate their role in the pathology.

2.
Front Genet ; 13: 873655, 2022.
Article in English | MEDLINE | ID: mdl-36468012

ABSTRACT

Glioma is a type of tumor occurring in the central nervous system. In recent decades, specific gene mutations and molecular aberrations have been used to conduct the glioma classification and clinical decisions. Siglec10 is a member of the sialic acid-binding immunoglobulin superfamily. In this study, we investigated the expression and functions of siglec10 in gliomas. We analyzed the siglec10 expression in glioma patients with immunohistochemical (IHC) staining and evaluated the survival prognosis. The high siglec10 expression had a shorter survival prognosis than the low siglec10 expression in patients, especially in malignant gliomas. Bioinformatic datasets, including TCGA and CGGA, validated the IHC results and discovered the expression of siglec10 was higher in the malignant subtype than a benign subtype of gliomas. So, siglec10 is associated with the poor prognosis of gliomas. Furthermore, the related mechanisms of siglec10 in gliomas were investigated by functional enrichment analysis, including GSEA, GO, and KEGG analysis. Siglec10 was correlated with inflammatory mediators, inflammatory cells, and inflammatory pathways in gliomas. Siglec10 might take part in the immune response in the tumor microenvironment to induce glioma's progression and metastasis. This study showed siglec10 was a biomarker in glioma, and it might be the potential target of glioma immunotherapy in the future.

3.
Front Oncol ; 12: 878849, 2022.
Article in English | MEDLINE | ID: mdl-35756603

ABSTRACT

Objective: This study aimed to investigate the diagnostic value and underlying mechanisms of sialic acid-binding Ig-like lectin 9 (SIGLEC9) in gliomas. Patients and Methods: The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases were used to analyze the association of SIGLEC9 expression levels with tumor stages and survival probability. Immunohistochemical staining of SIGLEC9 and survival analysis were performed in 177 glioma patients. Furthermore, related mechanisms were discovered about SIGLEC9 in glioma tumorigenesis, and we reveal how SIGLEC9 functions in macrophages through single-cell analysis. Results: TCGA and CGGA databases indicated that patients with high SIGLEC9 expression manifested a significantly shorter survival probability than those with low SIGLEC9 expression. SIGLEC9 was upregulated significantly in malignant pathological types, such as grade III, grade IV, mesenchymal subtype, and isocitrate dehydrogenase wild-type gliomas. The immunohistochemical staining of tissue sections from 177 glioma patients showed that high-SIGLEC9-expression patients manifested a significantly shorter survival probability than low-SIGLEC9-expression patients with age ≧60 years, grade IV, glioblastoma multiforme, alpha thalassemia/intellectual disability syndrome X-linked loss, and without radiotherapy or chemotherapy. Furthermore, the SIGLEC9 expression level was positively correlated with myeloid-derived suppressor cell infiltration and neutrophil activation. The SIGLEC9 expression was also positively correlated with major immune checkpoints, such as LAIR1, HAVCR2, CD86, and LGALS9. Through single-cell analysis, we found that the SIGLEC9 gene is related to the ability of macrophages to process antigens and the proliferation of macrophages. Conclusion: These findings suggested that SIGLEC9 is a diagnostic marker of poor outcomes in glioma and might serve as a potential immunotherapy target for glioma patients in the future.

4.
Dis Markers ; 2022: 1931818, 2022.
Article in English | MEDLINE | ID: mdl-35601742

ABSTRACT

Background: No epidemiological study has determined the association between the anion gap (AG) and all-cause mortality in cerebral infarction patients after treatment with rtPA. This study is aimed at using AG levels as a prognostic factor for evaluating cerebral infarction patients after receiving rtPA treatment and to help the resident physicians accurately evaluate the therapeutic plan of rtPA. Methods: We extracted clinical data from the public database (MIMIC-IV database V1.0) and used the Kaplan-Meier curve to estimate the survival probabilities of cerebral infarction patients after rtPA treatment for the one-year, four-year, and whole period by log-rank test in 948 intensive care unit patients. Cox proportional hazard models were used to assess the association between AG and one-year, four-year, and whole period mortality in cerebral infarction patients after treatment with rtPA. Results: Kaplan-Meier survival curve indicated a higher AG value is significantly associated with an increased risk of one-year, four-year, and whole-period all-cause mortality in cerebral infarction patients after treatment with rtPA. Model I adjusted for ethnicity, age, gender, and skin tone. Model II adjusted for ethnicity, age, gender, skin tone, hypertension, diabetes, coronary atherosclerosis, congestive heart failure, peripheral vascular, hyperlipidemia, acute myocardial infarction (AMI), respiratory failure, and end-stage renal diseaseesrd (ESRD). On the basis of model II, model III adjusted for WBC, BUN, creatinine, platelet, MCH, MCHC, MCV, RBC, and RDW. In addition, there was better predictive ability between higher AG levels and mortality in certain subgroups, such as patients with platelet ≤ 247, RBC > 3.11. Conclusion: Serum AG is positively related to all-cause mortality in cerebral infarction patients after treatment with rtPA.


Subject(s)
Acid-Base Equilibrium , Tissue Plasminogen Activator , Cerebral Infarction , Humans , Kaplan-Meier Estimate , Proportional Hazards Models , Retrospective Studies
5.
Front Cell Dev Biol ; 9: 700120, 2021.
Article in English | MEDLINE | ID: mdl-34595163

ABSTRACT

Herb-induced liver injury (HILI) has become a great concern worldwide due to the widespread usage of herbal products. Among these products is Dictamni Cortex (DC), a well-known Traditional Chinese Medicine (TCM), widely used to treat chronic dermatosis. Dictamni Cortex has drawn increasing attention because of its hepatotoxicity caused by the hepatotoxic component, dictamnine. However, the potential hepatotoxicity mechanism of dictamnine remains unclear. Therefore, this study aimed to use the multi-omics approach (transcriptomic, metabolomic, and proteomic analyses) to identify genes, metabolites, and proteins expressions associated with dictamnine-induced hepatotoxicity. A study on mice revealed that a high dose of dictamnine significantly increases serum aspartate aminotransferase (AST) activity, total bilirubin (TBIL), and direct bilirubin (DBIL) levels, the relative liver weight and liver/brain weight ratio in female mice (P < 0.05 and P < 0.01), compared to the normal control group. Liver histologic analysis further revealed a high dose of dictamnine on female mice caused hepatocyte vesicular steatosis characterized by hepatocyte microvesicles around the liver lobules. The expressed genes, proteins, and metabolites exhibited strong associations with lipid metabolism disorder and oxidative stress. Dictamnine caused increased oxidative stress and early hepatic apoptosis via up-regulation of glutathione S transferase a1 (GSTA1) and Bax/Bcl-2 ratio and down-regulation of the antioxidative enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase 1 (GPx-1). Besides, the up-regulation of Acyl-CoA synthetase long-chain family member 4 (ACSL4) and down-regulation of acetyl-coa acetyltransferase 1 (ACAT1) and fatty acid binding protein 1 (FABP-1) proteins were linked to lipid metabolism disorder. In summary, dictamnine induces dose-dependent hepatotoxicity in mice, which impairs lipid metabolism and aggravates oxidative stress.

6.
Front Pharmacol ; 12: 647084, 2021.
Article in English | MEDLINE | ID: mdl-33995060

ABSTRACT

In recent years, several drugs have been withdrawn from use by regulatory bodies owing to hepatotoxicity; therefore, studies on drug-induced liver injury (DILI) are being actively pursued. Most studies evaluating DILI use rats or mice as animal models to determine drug toxicity; however, the toxicity of a drug can vary between rats or mice. These inconsistencies in in vivo studies among different animal models affect the extrapolation of experimental results to humans. Thus, it is particularly important to choose the most suitable animal model to determine drug hepatotoxicity owing to the genomic differences between rats and mice resulting from evolution. In this study, genome-wide transcriptome analysis was used to explore hepatotoxicity caused by differences in species. Our findings provide the preclinical basis to further study the mechanisms of drug hepatotoxicity and aid in the selection of animal models to determine drug safety. We used murine models (Sprague-Dawley and Wistar rats, ICR and Kunming mice) in this study and by using transcriptome sequencing with the differentially expressed genes in rat and mouse livers as the entry point, we explored the mechanism of oxidative stress and the difference in gene expression in the lipid-metabolism pathway between rats and mice. The clinically established hepatotoxic drugs, fructus psoraleae and acetaminophen were used to validate our study. Using pathological studies, we confirmed that oxidative stress in mice was more serious than that in rats, and that Kunming mice were more suited for the study of oxidative stress-related DILI. The validity of our findings was further verified based on gene expression. Thus, our study could serve as a valuable reference for the evaluation of potential preclinical hepatotoxicity. Moreover, it could be used in the prediction and early diagnosis of drug-induced liver injury caused by traditional Chinese medicine or synthetic drugs, thereby providing a new avenue for drug-toxicity studies.

7.
PLoS Med ; 16(11): e1002975, 2019 11.
Article in English | MEDLINE | ID: mdl-31743352

ABSTRACT

BACKGROUND: The Sustainable Development Goals (SDGs), adopted by all United Nations (UN) member states in 2015, established a set of bold and ambitious health-related targets to achieve by 2030. Understanding China's progress toward these targets is critical to improving population health for its 1.4 billion people. METHODS AND FINDINGS: We used estimates from the Global Burden of Disease (GBD) Study 2016, national surveys and surveillance data from China, and qualitative data. Twenty-eight of the 37 indicators included in the GBD Study 2016 were analyzed. We developed an attainment index of health-related SDGs, a scale of 0-100 based on the values of indicators. The projection model is adjusted based on the one developed by the GBD Study 2016 SDG collaborators. We found that China has achieved several health-related SDG targets, including decreasing neonatal and under-5 mortality rates and the maternal mortality ratios and reducing wasting and stunting for children. However, China may only achieve 12 out of the 28 health-related SDG targets by 2030. The number of target indicators achieved varies among provinces and municipalities. In 2016, among the seven measured health domains, China performed best in child nutrition and maternal and child health and reproductive health, with the attainment index scores of 93.0 and 91.8, respectively, followed by noncommunicable diseases (NCDs) (69.4), road injuries (63.6), infectious diseases (63.0), environmental health (62.9), and universal health coverage (UHC) (54.4). There are daunting challenges to achieve the targets for child overweight, infectious diseases, NCD risk factors, and environmental exposure factors. China will also have a formidable challenge in achieving UHC, particularly in ensuring access to essential healthcare for all and providing adequate financial protection. The attainment index of child nutrition is projected to drop to 80.5 by 2025 because of worsening child overweight. The index of NCD risk factors is projected to drop to 38.8 by 2025. Regional disparities are substantial, with eastern provinces generally performing better than central and western provinces. Sex disparities are clear, with men at higher risk of excess mortality than women. The primary limitations of this study are the limited data availability and quality for several indicators and the adoption of "business-as-usual" projection methods. CONCLUSION: The study found that China has made good progress in improving population health, but challenges lie ahead. China has substantially improved the health of children and women and will continue to make good progress, although geographic disparities remain a great challenge. Meanwhile, China faced challenges in NCDs, mental health, and some infectious diseases. Poor control of health risk factors and worsening environmental threats have posed difficulties in further health improvement. Meanwhile, an inefficient health system is a barrier to tackling these challenges among such a rapidly aging population. The eastern provinces are predicted to perform better than the central and western provinces, and women are predicted to be more likely than men to achieve these targets by 2030. In order to make good progress, China must take a series of concerted actions, including more investments in public goods and services for health and redressing the intracountry inequities.


Subject(s)
Forecasting/methods , Global Burden of Disease/statistics & numerical data , Sustainable Development/trends , China/epidemiology , Communicable Diseases/epidemiology , Delivery of Health Care , Global Health , Humans , Noncommunicable Diseases , Population Health/statistics & numerical data , Risk Factors , Systems Analysis , Universal Health Insurance
8.
Arch Med Res ; 50(6): 384-392, 2019 08.
Article in English | MEDLINE | ID: mdl-31678897

ABSTRACT

BACKGROUND: T helper 2 (Th2) lymphocytes and associated interleukin (IL) 4 and IL-13 play crucial roles in asthma pathogenesis. In this study, we explored an adeno-associated virus 5 (AAV5) based gene therapy by delivering truncated IL-4 protein to antagonize IL-4 receptor α chain and interrupt asthmatic signal pathway. RESULTS: A recombinant adeno-associated virus 5 (AAV5) vector harboring a truncated mouse IL-4 gene (AAV5-mIL-4ΔC22) was prepared. Western blotting showed that the IL-4 mutant protein lacking the C-terminal 22 amino acids was expressed well in AAV5-mIL-4ΔC22 infected 16HBE and BEAS-2B cells. AAV5-drivn green fluorescent protein (AAV5-GFP) served as a control. The biodistribution of vector DNA after AAV5 vector aerosol inhalation was examined by PCR and the result showed that foreign DNA was detectable in the lungs but not in other organs including gonads. The aerosol inhalation-mediated delivery of AAV5-expressed antagonistic IL-4 mutant protein improved the lung function of ovalbumin-induced asthma mice. CONCLUSIONS: The inhalation of aerosolized AAV5-mIL-4ΔC22 significantly improved the lung function and modulated the immune cell infiltration and associated cytokine expression in the bronchoalveolar lavage fluid (BALF) of ovalbumin-induced asthma mice.


Subject(s)
Asthma/therapy , Genetic Therapy/methods , Interleukin-4 Receptor alpha Subunit/antagonists & inhibitors , Interleukin-4/genetics , Administration, Inhalation , Animals , Asthma/chemically induced , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/metabolism , Dependovirus , Disease Models, Animal , Female , Interleukin-4/immunology , Lung/pathology , Mice , Mice, Inbred BALB C , Ovalbumin/toxicity , Parvovirinae/genetics , Tissue Distribution
9.
J Mol Med (Berl) ; 93(3): 327-42, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25391250

ABSTRACT

UNLABELLED: In this study, we investigated the role of peroxisome proliferator-activated receptor γ (PPARγ) on store-operated calcium entry (SOCE) and expression of the main store-operated calcium channel (SOCCs) components, canonical transient receptor potential (TRPC) in chronic hypoxia (CH)-induced pulmonary hypertension (CHPH) rat models. Small interfering RNA (siRNA) knockdown and adenoviral overexpression strategies were constructed for loss-of-function and gain-of-function experiments. PPARγ agonist rosiglitazone attenuates the pathogenesis of CHPH and suppresses Hif-1α, TRPC1, TRPC6 expression in the distal pulmonary arteries (PA), and SOCE in freshly isolated rat distal pulmonary arterial smooth muscle cells (PASMCs). By comprehensive use of knockdown and overexpression studies, and bioinformatical analysis of the TRPC gene promoter and luciferase reporter assay, we demonstrated that PPARγ exerts roles of anti-proliferation, anti-migration, and pro-apoptosis in PASMCs, likely by inhibiting the elevated SOCE and TRPC expression. These effects were inhibited under the conditions of hypoxia or Hif-1α accumulation. We also found that under hypoxia, accumulated Hif-1α protein acts as upstream of suppressed PPARγ level; however, targeted PPARγ rescue acts as negative feedback on suppressing Hif-1α level and Hif-1α mediated signaling pathway. PPARγ inhibits CHPH by targeting SOCE and TRPC via inhibiting Hif-1α expression and signaling transduction. KEY MESSAGES: Rosiglitazone protects PH by normalizing RVSP but not right ventricle hypotrophy. PPARγ inhibits PASMCs proliferation via targeting SOCE and TRPC by suppressing Hif-1α. PPARγ and Hif-1α share mutual inhibitory regulation in PASMCs. PPARγ restoration might be a beneficial strategy for PH treatment.


Subject(s)
Calcium Signaling , Hypertension, Pulmonary/metabolism , PPAR gamma/physiology , Animals , Cell Hypoxia , Cell Movement , Cell Proliferation , Cells, Cultured , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Promoter Regions, Genetic , Rats, Sprague-Dawley , Rosiglitazone , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Thiazolidinediones/pharmacology , Transcription, Genetic , Transcriptional Activation
10.
PLoS One ; 9(12): e112695, 2014.
Article in English | MEDLINE | ID: mdl-25461595

ABSTRACT

Multiple abnormalities of bone morphogenetic protein (BMPs) signaling are implicated in the process of pulmonary arterial hypertension (PAH). BMP4 plays an important role during the process of pulmonary arterial remodeling and mutant of the principle BMP4 receptor, BMP receptors II (BMPRII), is found to associate with the development of PAH. However, the likely mechanism defining the contribution of BMPRII to BMP4 mediated signaling in pulmonary arterial smooth muscle cells (PASMCs) remains comprehensively unclear. We previously found that enhanced store operated calcium entry (SOCE) and basal intracellular calcium concentration [Ca2+]i were induced by BMP4 via upregulation of TRPC1, 4 and 6 expression in PASMCs, and that BMP4 modulated TRPC channel expression through activating p38MAPK and ERK1/2 signaling pathways. In this study, BMPRII siRNA was used to knockdown BMPRII expression to investigate whether BMP4 upregulates the expression of TRPC and activating Smad1/5/8, ERK1/2 and p38MAPK pathway via BMPRII in distal PASMCs. Our results showed that knockdown of BMPRII: 1) attenuated BMP4 induced activation of P-Smad1/5/8, without altering BMP4 induced P-p38MAPK and P-ERK1/2 activation in PASMCs; 2) did not attenuate the BMP4-induced TRPC1, 4 and 6 expression; 3) did not affect BMP4-enhanced SOCE and basal [Ca2+]i. Thus, we concluded that BMP4 activated Smad1/5/8 pathway is BMPRII-dependent, while the BMP4 - ERK/p-P38 - TRPC - SOCE signaling axis are likely mediated through other receptor rather than BMPRII.


Subject(s)
Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein Receptors, Type II/genetics , Calcium Signaling/genetics , TRPC Cation Channels/biosynthesis , Animals , Apoptosis Regulatory Proteins , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein Receptors, Type II/metabolism , Carrier Proteins/biosynthesis , Carrier Proteins/genetics , Cell Proliferation/genetics , Gene Expression Regulation , Humans , MAP Kinase Signaling System/genetics , Mitochondrial Proteins/biosynthesis , Mitochondrial Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , RNA, Small Interfering , Rats , TRPC Cation Channels/genetics , p38 Mitogen-Activated Protein Kinases/genetics
11.
PLoS One ; 9(11): e112007, 2014.
Article in English | MEDLINE | ID: mdl-25365342

ABSTRACT

BACKGROUND: Hypoxia causes remodeling and contractile responses in both pulmonary artery (PA) and pulmonary vein (PV). Here we explore the effect of hypoxia on PV and pulmonary venous smooth muscle cells (PVSMCs). METHODS: Chronic hypoxic pulmonary hypertension (CHPH) model was established by exposing rats to 10% O2 for 21 days. Rat distal PVSMCs were isolated and cultured for in vitro experiments. The fura-2 based fluorescence calcium imaging was used to measure the basal intracellular Ca2+ concentration ([Ca2+]i) and store-operated Ca2+ entry (SOCE). Quantitative RT-PCR and western blotting were performed to measure the expression of mRNA and levels of canonical transient receptor potential (TRPC) protein respectively. RESULTS: Hypoxia increased the basal [Ca2+]i and SOCE in both freshly dissociated and serum cultured distal PVSMCs. Moreover, hypoxia increased TRPC6 expression at mRNA and protein levels in both cultured PVSMCs exposed to prolonged hypoxia (4% O2, 60 h) and distal PV isolated from CHPH rats. Hypoxia also enhanced proliferation and migration of rat distal PVSMCs. CONCLUSIONS: Hypoxia induces elevation of SOCE in distal PVSMCs, leading to enhancement of basal [Ca2+]i in PVSMCs. This enhancement is potentially correlated with the increased expression of TRPC6. Hypoxia triggered intracellular calcium contributes to promoted proliferation and migration of PVSMCs.


Subject(s)
Calcium Signaling , Calcium/metabolism , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Muscle, Smooth, Vascular/metabolism , Pulmonary Veins/metabolism , TRPC Cation Channels/biosynthesis , Animals , Chronic Disease , Gene Expression Regulation , Hypertension, Pulmonary/pathology , Hypoxia/pathology , Male , Muscle, Smooth, Vascular/pathology , Pulmonary Veins/pathology , Rats , Rats, Sprague-Dawley , Vascular Remodeling
12.
PLoS One ; 9(9): e107135, 2014.
Article in English | MEDLINE | ID: mdl-25203114

ABSTRACT

RATIONALE: Our previous studies demonstrated that bone morphogenetic protein 4 (BMP4) mediated, elevated expression of canonical transient receptor potential (TRPC) largely accounts for the enhanced proliferation in pulmonary arterial smooth muscle cells (PASMCs). In the present study, we sought to determine the signaling pathway through which BMP4 up-regulates TRPC expression. METHODS: We employed recombinant human BMP4 (rhBMP4) to determine the effects of BMP4 on NADPH oxidase 4 (NOX4) and reactive oxygen species (ROS) production in rat distal PASMCs. We also designed small interfering RNA targeting NOX4 (siNOX4) and detected whether NOX4 knockdown affects rhBMP4-induced ROS, TRPC1 and 6 expression, cell proliferation and intracellular Ca2+ determination in PASMCs. RESULTS: In rhBMP4 treated rat distal PASMCs, NOX4 expression was (226.73±11.13) %, and the mean ROS level was (123.65±1.62) % of that in untreated control cell. siNOX4 transfection significantly reduced rhBMP4-induced elevation of the mean ROS level in PASMCs. Moreover, siNOX4 transfection markedly reduced rhBMP4-induced elevation of TRPC1 and 6 proteins, basal [Ca2+]i and SOCE. Furthermore, compared with control group (0.21±0.001), the proliferation of rhBMP4 treated cells was significantly enhanced (0.41±0.001) (P<0.01). However, such increase was attenuated by knockdown of NOX4. Moreover, external ROS (H2O2 100 µM, 24 h) rescued the effects of NOX4 knockdown, which included the declining of TRPC1 and 6 expression, basal intracellular calcium concentration ([Ca2+]i) and store-operated calcium entry (SOCE), suggesting that NOX4 plays as an important mediator in BMP4-induced proliferation and intracellular calcium homeostasis. CONCLUSION: These results suggest that BMP4 may increase ROS level, enhance TRPC1 and 6 expression and proliferation by up-regulating NOX4 expression in PASMCs.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Myocytes, Smooth Muscle/metabolism , NADPH Oxidases/metabolism , Pulmonary Artery/metabolism , TRPC Cation Channels/genetics , Up-Regulation/genetics , Animals , Bone Morphogenetic Protein 4/genetics , Calcium/metabolism , Calcium Signaling/drug effects , Calcium Signaling/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Humans , Hydrogen Peroxide/pharmacology , Myocytes, Smooth Muscle/drug effects , NADPH Oxidase 4 , NADPH Oxidases/genetics , Pulmonary Artery/drug effects , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , TRPC Cation Channels/metabolism , Up-Regulation/drug effects
13.
Am J Physiol Cell Physiol ; 306(4): C364-73, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24336649

ABSTRACT

To clarify the possible mechanism of cigarette smoke (CS)-induced pulmonary hypertension and furthermore provide effective targets for prevention and treatment, the effects of chronic CS on rat pulmonary arterial smooth muscle in vivo and nicotine treatment on rat pulmonary arterial smooth muscle cells (PASMCs) in vitro were investigated. In this study, we demonstrated that chronic CS exposure led to rat weight loss, right ventricular hypertrophy, and pulmonary arterial remodeling. A fluorescence microscope was used to measure intracellular calcium concentration ([Ca(2+)]i) in rat distal PASMCs. Results showed that basal [Ca(2+)]i and store-operated calcium entry (SOCE) levels in PASMCs from 3- and 6-mo CS-exposed rats were markedly higher than those in cells from the unexposed control animals (the increases in 6-mo CS group were more significant than that in 3-mo group), accompanied with increased canonical transient receptor potential 1 (TRPC1) and TRPC6 expression at both mRNA and protein levels in isolated distal PA. Simultaneously, in vitro study showed that nicotine treatment (10 nM) significantly increased basal [Ca(2+)]i and SOCE and upregulated TRPC1 and TRPC6 expression in cultured rat distal PASMCs. TRPC siRNA knockdown strategies revealed that the elevations of basal [Ca(2+)]i and SOCE induced by nicotine in PASMCs were TRPC1 and TRPC6 dependent. These results suggested that chronic CS-induced changes in vascular tone and structure in PA and the development of pulmonary hypertension might be largely due to upregulation of TRPC1 and TRPC6 expression in PASMCs, in which nicotine played an important role.


Subject(s)
Hypertension, Pulmonary/etiology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Smoking/adverse effects , TRPC Cation Channels/drug effects , Animals , Arterial Pressure/drug effects , Calcium Signaling/drug effects , Cells, Cultured , Familial Primary Pulmonary Hypertension , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , RNA Interference , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Time Factors , Transfection , Up-Regulation , Ventricular Function, Right/drug effects , Ventricular Pressure/drug effects
14.
PLoS One ; 8(7): e67942, 2013.
Article in English | MEDLINE | ID: mdl-23844134

ABSTRACT

BACKGROUND: Chronic hypoxia (CH) is known to be one of the major causes of pulmonary hypertension (PH), which is characterized by sustained elevation of pulmonary vascular resistance resulting from vascular remodeling. In this study, we investigated whether the ubiquitin proteasome system (UPS) was involved in the mechanism of hypoxia-induced pulmonary vascular remodeling. We isolated the distal pulmonary artery (PA) from a previously defined chronic hypoxic pulmonary hypertension (CHPH) rat model, performed proteomic analyses in search of differentially expressed proteins belonging to the UPS, and subsequently identified their roles in arterial remodeling. RESULTS: Twenty-two proteins were differently expressed between the CH and normoxic group. Among them, the expression of proteasome subunit beta (PSMB) 1 and PSMB6 increased after CH exposure. Given that PSMB1 is a well-known structural subunit and PSMB6 is a functional subunit, we sought to assess whether PSMB6 could be related to the multiple functional changes during the CHPH process. We confirmed the proteomic results by real-time PCR and Western blot. With the increase in quantity of the active subunit, proteasome activity in both cultured pulmonary artery smooth muscle cells (PASMCs) and isolated PA from the hypoxic group increased. An MTT assay revealed that the proteasome inhibitor MG132 was able to attenuate the hypoxia-induced proliferation of PASMC in a dose-dependent manner. Knockdown of PSMB6 using siRNA also prevented hypoxia-induced proliferation. CONCLUSION: The present study revealed the association between increased PSMB6 and CHPH. CH up-regulated proteasome activity and the proliferation of PASMCs, which may have been related to increased PSMB6 expression and the subsequently enhanced functional catalytic sites of the proteasome. These results suggested an essential role of the proteasome during CHPH development, a novel finding requiring further study.


Subject(s)
Hypertension, Pulmonary/etiology , Hypoxia/complications , Proteasome Endopeptidase Complex/metabolism , Proteomics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Animals , Cell Proliferation , Computational Biology/methods , Disease Models, Animal , Gene Expression , Gene Expression Regulation , Gene Knockdown Techniques , Male , Myocytes, Smooth Muscle/metabolism , Proteasome Endopeptidase Complex/genetics , Proteomics/methods , RNA, Messenger/genetics , Rats
15.
J Thorac Dis ; 5(2): 169-72, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23585945

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a lethal disease with no cure currently available. Sodium Tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA isolated as the major active component from salvia miltiorrhiza, a kind of Chinese herbal medicine. We investigate the efficacy of STS towards treatment of PH patients. METHODS AND RESULTS: Five hospitalized patients were randomly enrolled for this study. These patients were suffering from various types of serious PH without getting sufficient benefits from sildenafil treatment (20 mg tid) for at least three months. The efficacy of STS on PH was evaluated by measuring the pulmonary arterial systolic pressure (PASP), RV size by echocardiography, 6-minute walking distance (6MWD), Borg dyspnea score, and WHO functional class of PH. Patients aged from 17 to 46 (average 33±11) years old, pulmonary arterial systolic pressure (PASP) ranged from 60 to 140 mmHg, RV size ranged from 25 to 39 mm were included in study. At the endpoint of observation for 8 weeks of STS infusion, they obtained reduction of PASP in the range of 14-45 (average 28.6±12.5) mmHg, RV size in the range of 0-10 (average 4.2±1.6). All patients exhibited improved exercise capacity with an increase of 6MWD from 63 to 268 (average 138.4±40.7) meters, significantly reduced Borg dyspnea score from maximum 9 down to 1 or 0, and reduced WHO functional class of PH from III or IV down to II. CONCLUSIONS: These results indicate that STS exhibits remarkable beneficiary effects on treating PH patients either alone or in concert with sildenafil.

16.
Am J Physiol Cell Physiol ; 304(9): C833-43, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23447035

ABSTRACT

Recent studies indicate that multiple bone morphogenetic protein (BMP) family ligands and receptors are involved in the development of pulmonary arterial hypertension, yet the underlying mechanisms are incompletely understood. Although BMP2 and BMP4 share high homology in amino acid sequence, they appear to exert divergent effects on chronic hypoxic pulmonary hypertension (CHPH). While BMP4 promotes vascular remodeling, BMP2 prevents CHPH. We previously demonstrated that BMP4 upregulates the expression of canonical transient receptor potential channel (TRPC) proteins and, thereby, enhances store-operated Ca(2+) entry (SOCE) and elevates intracellular Ca(2+) concentration ([Ca(2+)]i) in pulmonary arterial smooth muscle cells (PASMCs). In this study, we investigated the effects of BMP2 on these variables in rat distal PASMCs. We found that treatment with BMP2 (50 ng/ml, 60 h) inhibited TRPC1, TRPC4, and TRPC6 mRNA and protein expression. Moreover, BMP2 treatment led to reduced SOCE and decreased basal [Ca(2+)]i in PASMCs. These alterations were associated with decreased PASMC proliferation and migration. Conversely, knockdown of BMP2 with specific small interference RNA resulted in increased cellular levels of TRPC1, TRPC4, and TRPC6 mRNA and protein, enhanced SOCE, elevated basal [Ca(2+)]i, and increased proliferation and migration of PASMCs. Together, these results indicate that BMP2 participates in regulating Ca(2+) signaling in PASMCs by inhibiting TRPC1, TRPC4, and TRPC6 expression, thus leading to reduced SOCE and basal [Ca(2+)]i and inhibition of cell proliferation and migration.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Calcium Signaling , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/cytology , TRPC Cation Channels/genetics , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/physiology , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Calcium/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Gene Expression , Gene Expression Regulation , Gene Knockdown Techniques , Male , Myocytes, Smooth Muscle/physiology , RNA, Small Interfering/genetics , Rats , Rats, Wistar , TRPC Cation Channels/metabolism
17.
PLoS One ; 7(6): e37995, 2012.
Article in English | MEDLINE | ID: mdl-22685550

ABSTRACT

We previously showed that adeno-associated virus 2 (AAV2) mediated subretinal delivery of human interferon-alpha (IFN-α) could effectively inhibit experimental autoimmune uveoretinitis (EAU). In this study we investigated whether subretinal injection of both AVV2.IFN-α and AAV2.IL-4 had a stronger inhibition on EAU activity. B10RIII mice were subretinally injected with AAV2.IFN-α alone (1.5×10(7) vg), AAV2.IL-4 alone (3.55×10(7) vg), and AAV2.IFN-α combined with AAV2.IL-4. PBS, AAV2 vector encoding green fluorescent protein (AAV2.GFP) (5×10(7) vg) was subretinally injected as a control. IFN-α and IL-4 were effectively expressed in the eyes from three weeks to three months following subretinal injection of AAV2 vectors either alone or following combined administration and significantly attenuated EAU activity clinically and histopathologically. AAV2.IL-4 showed a better therapeutic effect as compared to AAV2.IFN-α. The combination of AAV2.IL-4 and AAV2.IFN-α was not significantly different as compared to AAV2.IL-4 alone. There was no difference concerning DTH (delayed-type hypersensitivity) reaction, lymphocyte proliferation and IL-17 production among the investigated treatment groups, suggesting that local retinal gene delivery did not affect the systemic immune response.


Subject(s)
Autoimmune Diseases/metabolism , Dependovirus/genetics , Interferon-alpha/metabolism , Interleukin-4/metabolism , Retina/metabolism , Uveitis/therapy , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/therapy , Disease Models, Animal , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/genetics , Humans , Interferon alpha-2 , Interferon-alpha/genetics , Interleukin-4/genetics , Mice , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Retina/pathology , Severity of Illness Index , Treatment Outcome , Uveitis/genetics , Uveitis/metabolism
18.
PLoS One ; 7(5): e37773, 2012.
Article in English | MEDLINE | ID: mdl-22629453

ABSTRACT

BACKGROUND: Advances in gene transfer techniques have provided long-term, safe and stable transduction of retinal cells following subretinal injection with adeno-associated viral (AAV) vectors. In this study we investigated whether subretinal injection of AAV2-murine IL-27p28 vector was effective in inhibiting experimental autoimmune uveoretinitis (EAU) induced in B10RIII mice. METHODOLOGY/PRINCIPAL FINDINGS: An AAV2 vector encoding the murine IL-27p28 gene (rAAV2-CMV-mIL-27p28) was prepared and subretinally injected into B10RIII mice (4.35×10(8) vector genome (v.g.)). AAV2 vector mediating green fluorescent protein (rAAV2-CMV-GFP) served as a control (5×10(8) v.g.). The concentration of mIL-27p28 in homogenized eyes and serum was assayed by enzyme linked immunosorbent assay (ELISA) after subretinal injection. Human IRBP(161-180) peptide and Complete Freund's Adjuvant were injected into mice receiving either the rAAV2-CMV-mIL-27p28 or rAAV2-CMV-GFP vector. EAU was evaluated clinically and pathologically. The level of IL-17 and IL-10 in homogenized eyes was measured on day 12 and day 21 following immunization. Delayed type hypersensitivity (DTH) and IRBP(161-180)-specific proliferation of lymphocytes from the spleen and lymph nodes were assayed to examine the influence of the subretinal delivery of rAAV2-CMV-mIL-27p28 on the systemic immune response. IL-27p28 was detectable by ELISA within the eyes from two weeks following subretinal injection of the rAAV2-CMV-mIL-27p28 vector and showed a sustained high expression from day 14 to 9 months with a highest expression at 5 months. Subretinal injection of the vector significantly attenuated the severity of EAU disease clinically and pathologically in association with a significantly decreased IL-17 expression and an increased IL-10 expression. The IL-27p28 vector did not affect the systemic immune response, as determined by DTH and IRBP(161-180)-specific lymphocyte proliferation. CONCLUSIONS/SIGNIFICANCE: A high and stable expression of IL-27p28 was observed for at least 9 months following subretinal delivery of rAAV2-CMV-mIL-27p28. The amelioration of EAU disease severity was associated with a decreased IL-17 expression and an increased IL-10 expression.


Subject(s)
Autoimmune Diseases/therapy , Gene Transfer Techniques , Genetic Therapy , Interleukins/therapeutic use , Retinitis/therapy , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , Dependovirus/genetics , Eye/metabolism , Genetic Vectors , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukins/genetics , Mice , Retinitis/genetics , Retinitis/metabolism
19.
PLoS One ; 6(5): e19542, 2011.
Article in English | MEDLINE | ID: mdl-21611186

ABSTRACT

BACKGROUND: Recent reports show that gene therapy may provide a long-term, safe and effective intervention for human diseases. In this study, we investigated the effectiveness of adeno-associated virus 2 (AAV2) based human interferon-alpha (hIFN-α) gene therapy in experimental autoimmune uveoretinitis (EAU), a classic model for human uveitis. METHODOLOGY/PRINCIPAL FINDINGS: An AAV2 vector harboring the hIFN-α gene (AAV2.hIFN-α) was subretinally injected into B10RIII mice at two doses (1.5×10(6) vg, 1.5×10(8) vg). AAV2 vector encoding green fluorescent protein (AAV2.GFP) was used as a control (5×10(8) vg). The expression of hIFN-α in homogenized eyes and serum was detected by ELISA three weeks after injection. The biodistribution of vector DNA in the injected eyes, contralateral eyes and distant organs was determined by PCR. EAU was induced by immunization with IRBP(161-180) three weeks following vector injections, and evaluated clinically and pathologically. IRBP-specific proliferation and IL-17 expression of lymphocytes from the spleen and lymph nodes were assayed to test the influence of the subretinal delivery of AAV2.hIFN-α on the systemic immune response. hIFN-α was effectively expressed in the eyes from three weeks to three months following subretinal injection of AAV2.hIFN-α vector. DNA of AAV2.GFP was observed only in the injected eyes, but not in the distant organs or contralateral eyes. Subretinal injection of both doses significantly attenuated EAU activity clinically and histologically. For the lower dose, there was no difference concerning lymphocyte proliferation and IL-17 production among the AAV2.hIFN-α, AAV2.GFP and PBS injected mice. However, the higher dose of AAV2.hIFN-α significantly suppressed lymphocyte proliferation and IL-17 production. CONCLUSIONS/SIGNIFICANCE: Subretinal delivery of AAV2.hIFN-α lead to an effective expression within the eye for at least three months and significantly attenuated EAU activity. AAV2.hIFN-α was shown to inhibit the systemic IRBP-specific immune response.


Subject(s)
Autoimmune Diseases/therapy , Dependovirus/genetics , Gene Transfer Techniques , Interferon-alpha/genetics , Interferon-alpha/therapeutic use , Retinitis/therapy , Uveitis/therapy , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , DNA , Eye Proteins/immunology , Gene Expression , Genetic Therapy , Genetic Vectors , Humans , Immunity , Mice , Retina/metabolism , Retina/pathology , Retinitis/genetics , Retinitis/immunology , Retinitis/pathology , Retinol-Binding Proteins/immunology , Tissue Distribution , Transgenes , Uveitis/genetics , Uveitis/immunology , Uveitis/pathology
20.
Health Policy ; 84(2-3): 284-97, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17566591

ABSTRACT

OBJECTIVES: Yunnan is one of the poorest and most remote provinces in China. The reproductive health status of the population is poor. The aim of the study was to identify factors contributing to poor reproductive health and major barriers in accessing reproductive health information and care and to inform interventions to increase access to and the quality of care in service delivery. METHODS: The study was based on qualitative data collected from structured and unstructured interviews with health program managers, service providers, clients, and community members in three counties. Focus group discussions, field observations, reviews of the records of medical facilities and thematic analysis were used in the study. RESULTS: Gender inequality and the fragmented health system were some of the barriers in accessing the services. Incorrect diagnosis, over treatment and IUD insertion with un-sterilised tools may have contributed to the persistent high rate of reproductive tract infections (RTI) in the study settings. CONCLUSIONS: The improvement of reproductive health thus hinges critically upon the elevation of women's status. All health sectors within China's health system need to be better integrated and institutionally induced gender inequality ought to be reduced so that all in the population, particularly the vulnerable, will have equal and adequate access to reproductive health care.


Subject(s)
Healthcare Disparities , Reproductive Health Services , Women's Health , Access to Information , Adolescent , Adult , China , Female , Focus Groups , Health Services Accessibility , Humans , Interviews as Topic , Male , Sexually Transmitted Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...