Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 768
Filter
1.
ChemSusChem ; : e202400977, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831717

ABSTRACT

Electrocatalytic water splitting shows great potential for producing clean and green hydrogen, but it is hindered by slow reaction kinetics. Advanced electrocatalysts are needed to lower the energy barriers. The establishment of built-in electric fields (BIEF) in heterointerfaces has been found to be beneficial for speeding up electron transfer, increasing electrical conductivity, adjusting the local reaction environment, and optimizing the chemisorption energy with intermediates. Engineering and modifying the BIEF in heterojunctions offer significant opportunities to enhance the electronic properties of catalysts, thus improving reaction kinetics. This comprehensive review focuses on the latest advances in BIEF engineering in heterojunction catalysts for efficient water electrolysis. It highlights the fundamentals, engineering, modification, characterization, and application of BIEF in electrocatalytic water splitting. The review also discusses the challenges and future prospects of BIEF engineering. Overall, this review provides a thorough examination of BIEF engineering for the next generation of water electrolysis devices.

2.
PLoS One ; 19(5): e0298227, 2024.
Article in English | MEDLINE | ID: mdl-38696503

ABSTRACT

Medical image segmentation is a critical application that plays a significant role in clinical research. Despite the fact that many deep neural networks have achieved quite high accuracy in the field of medical image segmentation, there is still a scarcity of annotated labels, making it difficult to train a robust and generalized model. Few-shot learning has the potential to predict new classes that are unseen in training with a few annotations. In this study, a novel few-shot semantic segmentation framework named prototype-based generative adversarial network (PG-Net) is proposed for medical image segmentation without annotations. The proposed PG-Net consists of two subnetworks: the prototype-based segmentation network (P-Net) and the guided evaluation network (G-Net). On one hand, the P-Net as a generator focuses on extracting multi-scale features and local spatial information in order to produce refined predictions with discriminative context between foreground and background. On the other hand, the G-Net as a discriminator, which employs an attention mechanism, further distills the relation knowledge between support and query, and contributes to P-Net producing segmentation masks of query with more similar distributions as support. Hence, the PG-Net can enhance segmentation quality by an adversarial training strategy. Compared to the state-of-the-art (SOTA) few-shot segmentation methods, comparative experiments demonstrate that the proposed PG-Net provides noticeably more robust and prominent generalization ability on different medical image modality datasets, including an abdominal Computed Tomography (CT) dataset and an abdominal Magnetic Resonance Imaging (MRI) dataset.


Subject(s)
Neural Networks, Computer , Humans , Image Processing, Computer-Assisted/methods , Deep Learning , Algorithms , Magnetic Resonance Imaging/methods
3.
BMC Psychiatry ; 24(1): 371, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755677

ABSTRACT

OBJECTIVE: This study aims to conduct an exhaustive evaluation of Vilazodone's safety in clinical application and to unearth the potential adverse event (AE) risks associated with its utilization based on FDA Adverse Event Reporting System (FAERS) database. METHODS: This research employed data spanning from the first quarter of 2011 to the third quarter of 2023 from the FAERS database. Various signal detection methodologies, including the Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM), were utilized to ascertain the correlation between Vilazodone and specific AEs. RESULTS: The study compiled a total of 17,439,268 reports of drug AEs, out of which 5,375 were related to Vilazodone. Through signal mining, 125 Preferred Terms (PTs) encompassing 27 System Organ Classes (SOCs) were identified. The findings indicated a higher prevalence among females and patients within the 45 to 65 age bracket. The principal categories of AEs included Psychiatric disorders, Nervous system disorders, and Gastrointestinal disorders, with prevalent incidents of Diarrhoea, Nausea, and Insomnia. Moreover, the study identified robust signals of novel potential AEs, notably in areas such as sleep disturbances (Sleep paralysis, Hypnagogic hallucination, Rapid eye movements sleep abnormal, Sleep terror, Terminal insomnia, Tachyphrenia), sexual dysfunctions (Female orgasmic disorder, Orgasm abnormal, Disturbance in sexual arousal, Spontaneous penile erection, Anorgasmia, Sexual dysfunction, Ejaculation delayed), and other symptoms and injuries (Electric shock sensation, Violence-related symptom, Gun shot wound). CONCLUSION: Although Vilazodone presents a positive prospect in the management of MDD, the discovery of AEs linked to its use, particularly the newly identified potential risks such as sleep and sexual dysfunctions, necessitates heightened vigilance among clinicians.


Subject(s)
Adverse Drug Reaction Reporting Systems , Vilazodone Hydrochloride , Humans , Vilazodone Hydrochloride/adverse effects , Male , Female , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Middle Aged , United States/epidemiology , Adult , Aged , Databases, Factual , United States Food and Drug Administration , Young Adult , Adolescent , Bayes Theorem
4.
Heliyon ; 10(9): e30651, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765063

ABSTRACT

Silicosis is a progressive pulmonary fibrosis disease caused by long-term inhalation of silica. The early diagnosis and timely implementation of intervention measures are crucial in preventing silicosis deterioration further. However, the lack of screening and diagnostic measures for early-stage silicosis remains a significant challenge. In this study, silicosis models of varying severity were established through a single exposure to silica with different doses (2.5mg/mice or 5mg/mice) and durations (4 weeks or 12 weeks). The diagnostic performance of computed tomography (CT) quantitative analysis was assessed using lung density biomarkers and the lung density distribution histogram, with a particular focus on non-aerated lung volume. Subsequently, we developed and evaluated a stacking learning model for early diagnosis of silicosis after extracting and selecting features from CT images. The CT quantitative analysis reveals that while the lung densitometric biomarkers and lung density distribution histogram, as traditional indicators, effectively differentiate severe fibrosis models, they are unable to distinguish early-stage silicosis. Furthermore, these findings remained consistent even when employing non-aerated areas, which is a more sensitive indicator. By establishing a radiomics stacking learning model based on non-aerated areas, we can achieve remarkable diagnostic performance to distinguish early-stage silicosis, which can provide a valuable tool for clinical assistant diagnosis. This study reveals the potential of using non-aerated lung areas as a region of interest in stacking learning for early diagnosis of silicosis, providing new insights into early detection of this disease.

5.
J Agric Food Chem ; 72(20): 11392-11404, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717972

ABSTRACT

Methylesterases (MESs) hydrolyze carboxylic ester and are important for plant metabolism and defense. However, the understanding of MES' role in strawberries against pathogens remains limited. This study identified 15 FvMESs with a conserved catalytic triad from the Fragaria vesca genome. Spatiotemporal expression data demonstrated the upregulated expression of FvMESs in roots and developing fruits, suggesting growth involvement. The FvMES promoter regions harbored numerous stress-related cis-acting elements and transcription factors associated with plant defense mechanisms. Moreover, FvMES2 exhibited a significant response to Botrytis cinerea stress and showed a remarkable correlation with the salicylic acid (SA) signaling pathway. Molecular docking showed an efficient binding potential between FvMES2 and methyl salicylate (MeSA). The role of FvMES2 in MeSA demethylation to produce SA was further confirmed through in vitro and in vivo assays. After MeSA was applied, the transient overexpression of FvMES2 in strawberries enhanced their resistance to B. cinerea compared to wild-type plants.


Subject(s)
Botrytis , Fragaria , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Salicylates , Fragaria/genetics , Fragaria/immunology , Fragaria/microbiology , Fragaria/enzymology , Fragaria/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Plant Proteins/chemistry , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Salicylates/metabolism , Salicylates/pharmacology , Disease Resistance/genetics , Multigene Family , Molecular Docking Simulation , Fruit/genetics , Fruit/immunology , Fruit/microbiology , Fruit/chemistry , Fruit/enzymology , Fruit/metabolism
6.
Anal Methods ; 16(19): 3020-3029, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38690766

ABSTRACT

A concise and rapid detection method for Mycoplasma pneumoniae is urgently required due to its severe impact on human health. To meet such a need, this study proposed and constructed an innovative point-of-care testing (POCT) platform that consists of a hydrogen ion-selective loop-mediated isothermal amplification (H+-LAMP) sensor and an electrochemical detection device. The H+-LAMP sensor successfully integrated the working and reference electrodes and converted the H+ generated during the LAMP process into an electrochemical signal. High sensitivity and stability for pathogen detection were also achieved by treating the working electrode with an electrodeposited polyaniline solid contact layer and by using an ion-selective membrane. As a result, the sensor shows a sensitivity of 68.26 mV per pH, a response time of less than 2 s, and a potential drift of less than 5 mV within one hour, which well meets the urgent need. The results also demonstrated that the detection limit for Mycoplasma pneumoniae was lowered to 1 copy per µL, the nucleic acid extraction and detection process could be completed in 30 minutes, and the impact of interfering ions on the sensor was negligible. Validation with 20 clinical samples yielded satisfactory results. More importantly, the storage lifespan of such an electrochemical sensor is over seven days, which is a great advantage for on-site pathogen detection. Therefore, the hydrogen ion-selective sensor constructed in this investigation is particularly suitable as a core component for instant pathogen detection platforms.


Subject(s)
Electrochemical Techniques , Limit of Detection , Mycoplasma pneumoniae , Nucleic Acid Amplification Techniques , Mycoplasma pneumoniae/isolation & purification , Mycoplasma pneumoniae/genetics , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Humans , Hydrogen/chemistry , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Biosensing Techniques/methods , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/instrumentation , Electrodes
7.
Med Phys ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801340

ABSTRACT

BACKGROUND: Radiomics has been used in the diagnosis of tumor lymph node metastasis (LNM). However, to date, most studies have been based on intratumoral radiomics. Few studies have focused on the use of 18F-fluorodeoxyglucose positron emission computed tomography (18F-FDG PET/CT) peritumoral radiomics for the diagnosis of LNM in colorectal cancer (CRC). PURPOSE: Determining the value of radiomics features extracted from 18F-FDG PET/CT images of the peritumoral region in predicting LNM in patients with CRC. METHODS: The clinical data and preoperative 18F-FDG PET/CT images of 244 CRC patients were retrospectively analyzed. Intratumoral and peritumoral radiomics features were screened using the mutual information method, and least absolute shrinkage and selection operator regression. Based on the selected radiomics features, a radiomics score (Rad-score) was calculated, and independent risk factors obtained from univariate and multivariate logistic regression analyses were used to construct clinical and combined (Radiomics + Clinical) models. The performance of these models was evaluated using the DeLong test, while their clinical utility was assessed by decision curve analysis. Finally, a nomogram was constructed to visualize the predictive model. RESULTS: The most optimal set of features retained by the feature filtering process were all peritumoral radiomic features. Carcinoembryonic antigen levels, PET/CT-reported lymph node status and Rad-score were found to be independent risk factors for LNM. All three LNM risk assessment models exhibited good predictive performance, with the combined model showing the best classification results, with areas under the curve of 0.85 and 0.76 in the training and validation groups, respectively. The DeLong test revealed that the performance of the combined model was superior to that of the clinical and radiomics models in both the training and validation groups, although this difference was only statistically significant in the training group. DCA indicated that the combined model displayed better clinical utility. CONCLUSIONS: 18F-FDG PET/CT peritumoral radiomics is uniquely suited to predict the presence of LNM in patients with CRC. In particular, the predictive efficacy of LNM for precision therapy and individualized patient management can be improved by using a combination of clinical risk factors.

8.
Org Lett ; 26(15): 2939-2944, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38602425

ABSTRACT

A selective three-component 1,2-sulfonyl etherification of aryl 1,3-dienes enabled by copper catalysis to afford biologically interesting alkenyl 1,2-sulfone ether derivatives through C-S and C-O bond formation is described. The protocol proceeds with the sulfonyl chloride and alcohols under simple, mild, and base-free conditions, providing a straightforward route to sulfonylated allyl ether compounds with broad functional group tolerance and excellent chemo- and regioselectivity. Mechanistic studies indicate that the selective alkene difunctionalization includes a key copper-mediated single-electron transfer process.

9.
Neuron ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38614102

ABSTRACT

Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and maladaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.

10.
Int J Endocrinol ; 2024: 3950894, 2024.
Article in English | MEDLINE | ID: mdl-38571926

ABSTRACT

Objective: To explore associations of combined exposure to metabolic/inflammatory indicators with thyroid nodules. Methods: We reviewed personal data for health screenings from 2020 to 2021. A propensity score matching method was used to match 931 adults recently diagnosed with thyroid nodules in a 1 : 4 ratio based on age and gender. Conditional logistic regression and Bayesian kernel machine regression (BKMR) were used to explore the associations of single metabolic/inflammatory indicators and the mixture with thyroid nodules, respectively. Results: In the adjusted models, five indicators (ORQ4 vs. Q1: 1.30, 95% CI: 1.07-1.58 for fasting blood glucose; ORQ4 vs. Q1: 1.30, 95% CI: 1.08-1.57 for systolic blood pressure; ORQ4 vs. Q1: 1.26, 95% CI: 1.04-1.53 for diastolic blood pressure; ORQ4 vs. Q1: 1.23, 95% CI: 1.02-1.48 for white blood cell; ORQ4 vs. Q1: 1.28, 95% CI: 1.07-1.55 for neutrophil) were positively associated with the risk of thyroid nodules, while high-density lipoproteins (ORQ3 vs. Q1: 0.75, 95% CI: 0.61-0.91) were negatively associated with the risk of thyroid nodules. Univariate exposure-response functions from BKMR models showed similar results. Moreover, the metabolic and inflammatory mixture exhibited a significant positive association with thyroid nodules in a dose-response pattern, with systolic blood pressure being the greatest contributor within the mixture (conditional posterior inclusion probability of 0.82). No interaction effects were found among the five indicators. These associations were more prominent in males, participants with higher age (≥40 years old), and individuals with abnormal body mass index status. Conclusions: Levels of the metabolic and inflammatory mixture have a linear dose-response relationship with the risk of developing thyroid nodules, with systolic blood pressure levels being the most important contributor.

11.
Elife ; 122024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592773

ABSTRACT

Locus coeruleus (LC) projections to the hippocampus play a critical role in learning and memory. However, the precise timing of LC-hippocampus communication during learning and which LC-derived neurotransmitters are important for memory formation in the hippocampus are currently unknown. Although the LC is typically thought to modulate neural activity via the release of norepinephrine, several recent studies have suggested that it may also release dopamine into the hippocampus and other cortical regions. In some cases, it appears that dopamine release from LC into the hippocampus may be more important for memory than norepinephrine. Here, we extend these data by characterizing the phasic responses of the LC and its projections to the dorsal hippocampus during trace fear conditioning in mice. We find that the LC and its projections to the hippocampus respond to task-relevant stimuli and that amplifying these responses with optogenetic stimulation can enhance long-term memory formation. We also demonstrate that LC activity increases both norepinephrine and dopamine content in the dorsal hippocampus and that the timing of hippocampal dopamine release during trace fear conditioning is similar to the timing of LC activity. Finally, we show that hippocampal dopamine is important for trace fear memory formation, while norepinephrine is not.


Our brains are more likely to remember activities or incidents that stand out from typical day-to-day experiences. For instance, if your phone is stolen on the way to work, you will have a stronger memory of this experience compared to other uneventful commutes. These are known as salient events and can be emotional, surprising, or even just out of the ordinary. During salient events, an area of the brain known as the hippocampus receives chemicals called neuromodulators from other parts of the brain. These neuromodulators enhance the formation of the memory by modifying how neurons connect together in the hippocampus. One of the regions that signals to the hippocampus ­ called the locus coeruleus ­ was thought to enhance memory by releasing the neuromodulator norepinephrine. Recent studies indicate that the locus coeruleus also releases a second neuromodulator called dopamine. However, it remained unclear what causes the locus coeruleus to release dopamine, and what effect this neuromodulator has on the hippocampus. To investigate these questions, Wilmot et al. recorded and manipulated the activity of the locus coeruleus in the brains of mice experiencing salient, fearful events. The mice were exposed to a sound and, a few seconds later, a shock to the foot to illicit the formation of an aversive salient memory. If the next day, the mice responded to just the sound as if they were expecting a shock, this indicated they had remembered the aversive experience. Wilmot et al. observed that neurons in the locus coeruleus were active during the salient event, resulting in increased dopamine in the hippocampus. When the activity of these neurons was forcefully increased during relatively non-salient events, such as a quiet tone and a very mild shock, the animals still showed strong memory formation. Finally, blocking the action of dopamine in the hippocampus substantially affected memory formation, whereas blocking the action of norepinephrine did not have the same effect. These findings suggest that the locus coeruleus enhances the memory of salient events by increasing the levels of dopamine in the hippocampus not norepinephrine, as was previously thought. Developing a better understanding of how the locus coeruleus regulates memory may lead to improved treatments for various neurological disorders, like Alzheimer's disease, which are associated with neuromodulators taking on different roles in the hippocampus.


Subject(s)
Dopamine , Locus Coeruleus , Animals , Mice , Fear , Hippocampus , Norepinephrine
12.
Gut Pathog ; 16(1): 25, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678229

ABSTRACT

BACKGROUND: Peutz-Jeghers syndrome (PJS) is a rare genetic disorder characterized by the development of pigmented spots, gastrointestinal polyps and increased susceptibility to cancers. Currently, most studies have investigated intestinal microbiota through fecal microbiota, and there are few reports about mucosa-associated microbiota. It remains valuable to search for the key intestinal microbiota or abnormal metabolic pathways linked to PJS. AIM: This study aimed to assess the structure and composition of mucosa-associated microbiota in patients with PJS and to explore the potential influence of intestinal microbiota disorders and metabolite changes on PJS. METHODS: The bacterial composition was analyzed in 13 PJS patients and 12 controls using 16S rRNA gene sequencing (Illumina MiSeq) for bacteria. Differential analyses of the intestinal microbiota were performed from the phylum to species level. Liquid chromatography-tandem mass spectrometry (LC‒MS) was used to detect the differentially abundant metabolites of PJS patients and controls to identify different metabolites and metabolic biomarkers of small intestinal mucosa samples. RESULTS: High-throughput sequencing confirmed the special characteristics and biodiversity of the mucosa microflora in patients with PJS. They had lower bacterial biodiversity than controls. The abundance of intestinal mucosal microflora was significantly lower than that of fecal microflora. In addition, lipid metabolism, amino acid metabolism, carbohydrate metabolism, nucleotide metabolism and other pathways were significantly different from those of controls, which were associated with the development of the enteric nervous system, intestinal inflammation and development of tumors. CONCLUSION: This is the first report on the mucosa-associated microbiota and metabolite profile of subjects with PJS, which may be meaningful to provide a structural basis for further research on intestinal microecology in PJS.

13.
Front Microbiol ; 15: 1379879, 2024.
Article in English | MEDLINE | ID: mdl-38680916

ABSTRACT

Leaves of Camellia sinensis plants are used to produce tea, one of the most consumed beverages worldwide, containing a wide variety of bioactive compounds that help to promote human health. Tea cultivation is economically important, and its sustainable production can have significant consequences in providing agricultural opportunities and lowering extreme poverty. Soil parameters are well known to affect the quality of the resultant leaves and consequently, the understanding of the diversity and functions of soil microorganisms in tea gardens will provide insight to harnessing soil microbial communities to improve tea yield and quality. Current analyses indicate that tea garden soils possess a rich composition of diverse microorganisms (bacteria and fungi) of which the bacterial Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and Chloroflexi and fungal Ascomycota, Basidiomycota, Glomeromycota are the prominent groups. When optimized, these microbes' function in keeping garden soil ecosystems balanced by acting on nutrient cycling processes, biofertilizers, biocontrol of pests and pathogens, and bioremediation of persistent organic chemicals. Here, we summarize research on the activities of (tea garden) soil microorganisms as biofertilizers, biological control agents and as bioremediators to improve soil health and consequently, tea yield and quality, focusing mainly on bacterial and fungal members. Recent advances in molecular techniques that characterize the diverse microorganisms in tea gardens are examined. In terms of viruses there is a paucity of information regarding any beneficial functions of soil viruses in tea gardens, although in some instances insect pathogenic viruses have been used to control tea pests. The potential of soil microorganisms is reported here, as well as recent techniques used to study microbial diversity and their genetic manipulation, aimed at improving the yield and quality of tea plants for sustainable production.

14.
Sci Total Environ ; 928: 172494, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38631642

ABSTRACT

Environmental factors significantly impact grain mycobiome assembly and mycotoxin contamination. However, there is still a lack of understanding regarding the wheat mycobiome and the role of fungal communities in the interaction between environmental factors and mycotoxins. In this study, we collected wheat grain samples from 12 major wheat-producing provinces in China during both the harvest and storage periods. Our aim was to evaluate the mycobiomes in wheat samples with varying deoxynivalenol (DON) contamination levels and to confirm the correlation between environmental factors, the wheat mycobiome, and mycotoxins. The results revealed significant differences in the wheat mycobiome and co-occurrence network between contaminated and uncontaminated wheat samples. Fusarium was identified as the main differential taxon responsible for inducing DON contamination in wheat. Correlation analysis identified key factors affecting mycotoxin contamination. The results indicate that both environmental factors and the wheat mycobiome play significant roles in the production and accumulation of DON. Environmental factors can affect the wheat mycobiome assembly, and wheat mycobiome mediates the interaction between environmental factors and mycotoxin contamination. Furthermore, a random forest (RF) model was developed using key biological indicators and environmental features to predict DON contamination in wheat with accuracies exceeding 90 %. The findings provide data support for the accurate prediction of mycotoxin contamination and lay the foundation for the research on biological control technologies of mycotoxin through the assembly of synthetic microbial communities.


Subject(s)
Mycobiome , Mycotoxins , Triticum , Triticum/microbiology , Mycotoxins/analysis , Mycotoxins/metabolism , China , Edible Grain/microbiology , Food Contamination/analysis , Trichothecenes/analysis , Trichothecenes/metabolism , Fusarium , Environmental Monitoring
15.
JAACAP Open ; 2(1): 36-44, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38533351

ABSTRACT

Objective: Many children with autism spectrum disorder (ASD) and other developmental disabilities (DD) transitioned to telehealth services due to the COVID-19 pandemic. Our objectives were to describe reductions in allied and behavioral healthcare services and receipt of caregiver training to deliver services at home because of COVID-19 for children with ASD and other DD, and factors associated with worse response to remote delivery of services for children with ASD. Method: Prior to the pandemic, children 2 to 5 years of age were enrolled in a multi-site case-control study and completed a developmental assessment. Caregivers completed questionnaires on child behavior problems and ASD symptoms. Children were classified as having ASD vs another DD based on standardized diagnostic measures. Subsequently, caregivers completed a survey during January to June 2021 to assess how COVID-19 affected children and families. Results: Caregivers reported that most children with ASD and other DD had a decrease in service hours (50.0%-76.9% by service type) during the COVID-19 pandemic. Children with ASD were significantly more likely to experience reduced speech/language therapy than children with other DD. Receipt of caregiver training to deliver services at home ranged from 38.1% to 57.4% by service type. Among children with ASD, pre-pandemic problems with internalizing behaviors and social communication/interaction were associated with worse response to behavioral telehealth but no other common therapies. Conclusion: Our study demonstrates the caregiver-reported impacts of COVID-19 on remote delivery of allied and behavioral healthcare services for children with ASD and other DD. Considerations for caregiver support and remote delivery of services are provided.

16.
J Fungi (Basel) ; 10(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38535196

ABSTRACT

The Asian water plantain, Alisma orientale (Sam.) Juzep, is a traditional Chinese medicinal plant. The dried tubers of the Alisma orientale, commonly referred to as Alismatis rhizome (AR), have long been used in traditional Chinese medicine to treat a variety of diseases. Soil properties and the soil microbial composition are known to affect the quality and bioactivity of plants. Here, we sought to identify variations in soil fungal communities and soil properties to determine which would be optimal for cultivation of A. orietale. Soil properties, heavy metal content, and pesticide residues were determined from soils derived from four different agricultural regions around Shaowu City, Fujian, China, that had previously been cultivated with various crops, namely, Shui Dao Tu (SDT, rice), Guo Shu Tu (GST, pecan), Cha Shu Tu (CST, tea trees), and Sang Shen Tu (SST, mulberry). As fungi can either positively or negatively impact plant growth, the fungal communities in the different soils were characterized using long-read PacBio sequencing. Finally, we examined the quality of A. orientale grown in the different soils. Our results show that fungal community diversity of the GST soil was the highest with saprotrophs the main functional modes in these and SDT soils. Our data show that GST and SDT soils were most suitable for A. orientale growth, with the quality of the AR tubers harvested from GST soil being the highest. These data provide a systematic approach at soil properties of agricultural lands in need of replacement and/or rotating crops. Based on our findings, GST was identified as the optimal soil for planting A. orientale, providing a new resource for local farmers.

17.
Nat Plants ; 10(4): 645-660, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503963

ABSTRACT

Photosystem I (PSI) is one of two large pigment-protein complexes responsible for converting solar energy into chemical energy in all oxygenic photosynthetic organisms. The PSI supercomplex consists of the PSI core complex and peripheral light-harvesting complex I (LHCI) in eukaryotic photosynthetic organisms. However, how the PSI complex assembles in land plants is unknown. Here we describe PHOTOSYSTEM I BIOGENESIS FACTOR 8 (PBF8), a thylakoid-anchored protein in Arabidopsis thaliana that is required for PSI assembly. PBF8 regulates two key consecutive steps in this process, the building of two assembly intermediates comprising eight or nine subunits, by interacting with PSI core subunits. We identified putative PBF8 orthologues in charophytic algae and land plants but not in Cyanobacteria or Chlorophyta. Our data reveal the major PSI assembly pathway in land plants. Our findings suggest that novel assembly mechanisms evolved during plant terrestrialization to regulate PSI assembly, perhaps as a means to cope with terrestrial environments.

18.
Cell Rep ; 43(3): 113892, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38431841

ABSTRACT

Hexanucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Due to the lack of trunk neuromuscular organoids (NMOs) from ALS patients' induced pluripotent stem cells (iPSCs), an organoid system was missing to model the trunk spinal neuromuscular neurodegeneration. With the C9orf72 ALS patient-derived iPSCs and isogenic controls, we used an NMO system containing trunk spinal cord neural and peripheral muscular tissues to show that the ALS NMOs could model peripheral defects in ALS, including contraction weakness, neural denervation, and loss of Schwann cells. The neurons and astrocytes in ALS NMOs manifested the RNA foci and dipeptide repeat proteins. Acute treatment with the unfolded protein response inhibitor GSK2606414 increased the glutamatergic muscular contraction 2-fold and reduced the dipeptide repeat protein aggregation and autophagy. This study provides an organoid system for spinal neuromuscular pathologies in ALS and its application for drug testing.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Proteins/genetics , Dipeptides/pharmacology , Dipeptides/metabolism , DNA Repeat Expansion
19.
Sci Rep ; 14(1): 6541, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38504103

ABSTRACT

The neurotransmitter serotonin plays a pivotal role in mood and depression. It also acts as a vasoconstrictor within blood vessels and is the main neurotransmitter in the gastrointestinal system. In neurotransmission, released serotonin is taken up by serotonin transporters, which are principal targets of antidepressants and the psychostimulant, ecstasy. The investigation of serotonin transporters have relied almost exclusively on the use of radiolabeled serotonin in heterogenous end-point assays. Here we adapt the genetically encoded fluorescent biosensor, iSeroSnFR, to establish and validate the Serotonin (5-HT) Fluorescence Assay for Transport and Release (5-HT_FAsTR) for functional and pharmacological studies of serotonin transport and release. We demonstrate the applicability of the method for the study of a neuronal, high-affinity, low-capacity serotonin transporter (SERT) as well as an extraneuronal low-affinity, high-capacity organic cation transporter and mutants thereof. 5HT_FAsTR offers an accessible, versatile and reliable semi-homogenous assay format that only relies on a fluorescence plate reader for repeated, real-time measurements of serotonin influx and efflux. 5HT_FAsTR accelerates and democratizes functional characterization and pharmacological studies of serotonin transporters and genetic variants thereof in disease states such as depression, anxiety and ADHD.


Subject(s)
Serotonin Plasma Membrane Transport Proteins , Serotonin , Fluorescence , Serotonin Plasma Membrane Transport Proteins/genetics , Antidepressive Agents , Neurotransmitter Agents
20.
Nat Med ; 30(4): 1035-1043, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38438735

ABSTRACT

Epigenetic modifications of chromatin, including histone acetylation, and tumor angiogenesis play pivotal roles in creating an immunosuppressive tumor microenvironment. In the randomized phase 2 CAPability-01 trial, we investigated the potential efficacy of combining the programmed cell death protein-1 (PD-1) monoclonal antibody sintilimab with the histone deacetylase inhibitor (HDACi) chidamide with or without the anti-vascular endothelial growth factor (VEGF) monoclonal antibody bevacizumab in patients with unresectable chemotherapy-refractory locally advanced or metastatic microsatellite stable/proficient mismatch repair (MSS/pMMR) colorectal cancer. Forty-eight patients were randomly assigned to either the doublet arm (sintilimab and chidamide, n = 23) or the triplet arm (sintilimab, chidamide and bevacizumab, n = 25). The primary endpoint of progression-free survival (PFS) rate at 18 weeks (18wPFS rate) was met with a rate of 43.8% (21 of 48) for the entire study population. Secondary endpoint results include a median PFS of 3.7 months, an overall response rate of 29.2% (14 of 48), a disease control rate of 56.3% (27 of 48) and a median duration of response of 12.0 months. The secondary endpoint of median overall survival time was not mature. The triplet arm exhibited significantly improved outcomes compared to the doublet arm, with a greater 18wPFS rate (64.0% versus 21.7%, P = 0.003), higher overall response rate (44.0% versus 13.0%, P = 0.027) and longer median PFS rate (7.3 months versus 1.5 months, P = 0.006). The most common treatment-emergent adverse events observed in both the triplet and doublet arms included proteinuria, thrombocytopenia, neutropenia, anemia, leukopenia and diarrhea. There were two treatment-related fatalities (hepatic failure and pneumonitis). Analysis of bulk RNA sequencing data from the patients suggested that the triplet combination enhanced CD8+ T cell infiltration, resulting in a more immunologically active tumor microenvironment. Our study suggests that the combination of a PD-1 antibody, an HDACi, and a VEGF antibody could be a promising treatment regimen for patients with MSS/pMMR advanced colorectal cancer. ClinicalTrials.gov registration: NCT04724239 .


Subject(s)
Aminopyridines , Benzamides , Colorectal Neoplasms , Histone Deacetylase Inhibitors , Humans , Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bevacizumab/adverse effects , Bevacizumab/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Histone Deacetylase Inhibitors/adverse effects , Histone Deacetylase Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Tumor Microenvironment , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL
...