Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 277(Pt 1): 134075, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39043285

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant bacterium that causes a wide range of illnesses, necessitating the development of new technologies for its detection. Herein, we propose a graphene oxide (GO)-based sensing platform for the detection of mecA gene in MRSA using flap endonuclease 1 (FEN1)-assisted target recycling and Klenow fragment (KF)-triggered signal amplification. Without the target, all the DNA probes were adsorbed onto GO, resulting in fluorescence quenching of the dye. Upon the addition of the target, a triple complex was formed that triggered FEN1-assisted target recycling and initiated two polymerization reactions with the assistance of KF polymerase, generating numerous dsDNA that were repelled by GO. These dsDNAs triggered fluorescence enhancement when SYBR Green I was added. Therefore, the target DNA was quantified by measuring the fluorescence at excitation and emission wavelengths of 480/526 nm. This mecA gene assay showed a good linear range from 1 to 50 nM with a lower limit of detection of 0.26 nM, and displayed good applicability to the analysis of real samples. Thus, a new method for monitoring MRSA has been developed that has great potential for early clinical diagnosis and treatment.

2.
Talanta ; 259: 124549, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37062089

ABSTRACT

We describe a graphene oxide (GO)-based bioassay for the fluorometric determination of norA gene transcription (mRNA) in methicillin-resistant Staphylococcus aureus (MRSA). This approach is based on Nb.BbvCI-assisted target recycling (NATR) and T7 exonuclease (T7 Exo)-triggered cascade dual-recycling signal amplification (TTCDRSA). The system included GO, a capture probe (CP), an assistant probe (AP), two carboxyfluorescein (FAM)-labeled hairpins (HP1 and HP2), endonuclease Nb.BbvcI, and exonuclease T7. In the presence of a target, AP, together with the target RNA, can hybridise with CP via partial complementarity to one another and open its hairpin structure to form a triple complex that is recognised by Nb.BbvCI. Once the CP is cleaved, the released AP and target RNA can walk on the carboxylated graphene oxide (CGO) surface to bind with another CP which induces the next round of cleavage, accumulating many trigger probes (TPs). The TPs then activate TTCDRSA with the assistance of T7 Exo, HP1, and HP2 to produce large amounts of free FAMs. These free FAMs are repelled by GO and exhibit enhanced fluorescence signals at excitation/emission wavelengths of 480/514 nm. The limit of detection (LOD) of the bioassay was calculated to be 0.37 fM, and the linear range of the method ranged from 1 fM to 1 nM. More importantly, the bioassay also exhibited high sensitivity and selectivity for target RNA detection in real samples, which may open a new promising avenue for monitoring drug efflux and studying the mechanisms of drug actions.


Subject(s)
Biosensing Techniques , Graphite , Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/metabolism , Graphite/chemistry , Niobium , Exodeoxyribonucleases/metabolism , Limit of Detection , RNA , Oxides/chemistry , Transcription, Genetic , Chromosomal Proteins, Non-Histone/metabolism , Biosensing Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...