Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 201: 114347, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825168

ABSTRACT

PEGylated superoxide dismutase (PEG-SOD) is commonly used as a cytoprotective agent in radiotherapy. However, its effectiveness in preventing radiation dermatitis is limited owing to its poor skin permeability. To address this issue, a PEG-SOD-loaded dissolving microneedle (PSMN) patch was developed to effectively prevent radiation dermatitis. Initially, PSMN patches were fabricated using a template mold method with polyvinylpyrrolidone K90 as the matrix material. PSMNs exhibited a conical shape with adequate mechanical strength to penetrate the stratum corneum. More than 90 % of PEG-SOD was released from the PSMN patches within 30 min. Notably, the PSMN patches showed a significantly higher drug skin permeation than the PEG-SOD solutions, with a 500-fold increase. In silico simulations and experiments on skin pharmacokinetics confirmed that PSMN patches enhanced drug permeation and skin absorption, in contrast to PEG-SOD solutions. More importantly, PSMN patches efficiently mitigated ionizing radiation-induced skin damage, accelerated the healing process of radiation-affected skin tissues, and exhibited highly effective radioprotective activity for DNA in the skin tissue. Therefore, PSMN patches are promising topical remedy for the prevention of radiation dermatitis.


Subject(s)
Administration, Cutaneous , Needles , Polyethylene Glycols , Radiodermatitis , Skin Absorption , Skin , Superoxide Dismutase , Transdermal Patch , Polyethylene Glycols/chemistry , Animals , Superoxide Dismutase/metabolism , Superoxide Dismutase/administration & dosage , Skin/metabolism , Skin/drug effects , Skin/radiation effects , Radiodermatitis/prevention & control , Skin Absorption/drug effects , Mice , Male , Radiation-Protective Agents/administration & dosage , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/pharmacokinetics
2.
Drugs R D ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811485

ABSTRACT

BACKGROUND AND OBJECTIVE: Azithromycin is the first azalide antibiotic that is related to the macrolide family of antibiotics. Bioequivalence studies in China are initiated by the National Medical Products Administration (NMPA), which supports a generic consistency evaluation program for ensuring that generic products manufactured in China meet the required standards and provide equivalent therapeutic effects to their reference products. This study aimed to assess the bioequivalence of two azithromycin tablets under both fasting and fed conditions in healthy Chinese volunteers. METHODS: This was a single-center, open-label, single-dose, randomized, three-way crossover trial with two independent groups (fasting group and fed group). A total of 72 healthy Chinese subjects (36 subjects in the fasting state and 36 subjects in the fed state) were enrolled and randomized to treatment. Blood samples were collected from 0 to 120 h after a single oral dose of a 250-mg generic azithromycin tablet (test, T) or branded azithromycin tablet (reference, R). The plasma concentrations of azithromycin were determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC‒MS/MS). A non-compartmental analysis method was used to estimate the pharmacokinetic parameters. Adverse events were documented. RESULTS: In a fasting state, the bioequivalence of maximum plasma concentration (Cmax) was evaluated using the reference-scaled average bioequivalence (RSABE) approach (within-subject standard deviation, SWR > 0.294), and the bioequivalence of area under the concentration-time curve from time 0 to the time of the last measurable plasma concentration (AUC0-t) and area under the concentration-time curve from time 0 extrapolated to infinity (AUC0-∞) were evaluated by the average bioequivalence (ABE) method (SWR <  0.294). The geometric mean ratio (GMR) of T/R for Cmax was 106.49%, while the 95% upper confidence bound was <  0. The GMRs of AUC0-t and AUC0-∞ were 103.34% and 101.28%, and the 90% confidence intervals (CIs) of the test/reference were 95.90-111.35%/94.85-108.15%, respectively. In the fed state, the RSABE approach was applied to estimate the bioequivalence of Cmax (SWR >0.294), and the ABE approach was applied to estimate the bioequivalence of AUC0-t and AUC0-∞ (SWR <  0.294). The GMR for Cmax was 99.80%, while the 95% upper confidence bound value was <  0. The GMRs of AUC0-t and AUC0-∞ were 97.07% and 98.15%, and the 90% CIs of the T/R were 90.02-104.68% and 90.66-106.25%, respectively. All adverse events were mild and transient. CONCLUSIONS: The trial indicated that the test and the reference azithromycin tablets were bioequivalent and well tolerated in healthy Chinese volunteers under both fasting and fed conditions. TRIAL REGISTRATION: Clinicaltrials, ChiCTR2300071630 (retrospectively registered in 19/05/2023).

3.
Xenobiotica ; 54(1): 38-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38085693

ABSTRACT

Gefitinib is the first-generation drug of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) metabolised by the cytochrome P450 and transported by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). In the present study, the pharmacokinetics of gefitinib in healthy Chinese volunteers was investigated and the effect of genetic polymorphisms on its variability was evaluted.Forty-five healthy volunteers were administered a single dose of gefitinib and the blood samples were used for quantifying the concentration of gefitinib and genotyping fifteen single-nucleotide polymorphisms of cytochrome P450 enzymes (CYP3A4, CYP3A5, CYP2D6, CYP2C9 and CYP2C19) and drug transporters (ABCB1 and ABCG2).CYP3A5*3 (rs776746) polymorphism showed a significant influence, with higher gefitinib AUC0-t in carrier of CC genotype than in CT/TT genotype (BH-adjusted p value <0.05). For CYP2C9*3 (rs1057910), significant differences in pharmacokinetics of gefitinib were detected between carriers of AA and AC genotypes, with higher AUC0-t, AUC0-∞ and Cmax in carrier of AC genotype than in AA gen-otype (BH-adjusted p value <0.05). No associations were found between SNPs in CYP3A4, CYP2D6, CYP2C19, ABCB1, ABCG2 and the pharmacokinetics of gefitinib.The SNPs in CYP3A5*3 (rs776746) and CYP2C9*3 (rs1057910) were found to be associated with altered gefitinib pharmacokinetics in healthy Chinese volunteers.


Subject(s)
Cytochrome P-450 CYP2D6 , Cytochrome P-450 CYP3A , Humans , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Gefitinib , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2D6/metabolism , Healthy Volunteers , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C9/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Polymorphism, Single Nucleotide , Genotype , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , China
4.
J Innate Immun ; 13(5): 280-294, 2021.
Article in English | MEDLINE | ID: mdl-33789282

ABSTRACT

Encapsulation is a vital cellular immune reaction of host insects against endoparasitoids; however, how encapsulation is regulated is still unclear. Utilizing a cell line, SYSU-OfHem C, derived from larval hemocytes of the Asian corn borer Ostrinia furnacalis to assay for encapsulation response, an encapsulation-promoting protein (OfEPP1) was isolated from the plasma of O. furnacalis larvae. OfEPP1 is a novel secretory protein, which exists only in O. furnacalis to date. The OfEpp1 gene is intronless and encodes a protein containing several groups of short repetitive sequences and a high proportion of proline residues (18.3%). OfEPP1 is a thermally stable protein that is mainly expressed in fat bodies, and its accumulation could be induced by the injection of foreign objects (Sephadex beads). Eukaryotically expressed recombinant OfEPP1 promoted hemocytes to encapsulate Sephadex beads, while prokaryotically expressed protein did not, indicating that posttranscriptional modification affects the function of OfEPP1. The encapsulation-promoting function of OfEPP1 could be neutralized by the addition of polyclonal antibodies against OfEPP1 or disrupted by the injection of dsRNA targeting OfEpp1. Eukaryotically expressed OfEPP1 promoted the aggregation, but not spreading, of both granulocytes and plasmatocytes. Immunocytochemistry analysis showed that eukaryotically expressed OfEPP1 could bind to the surface of hemocytes. Therefore, we speculate that OfEPP1 possibly promotes hemocytic encapsulation by binding to the surface of hemocytes as a ligand to induce their aggregation. This study provides evidence clarifying the mechanism of encapsulation in insects.


Subject(s)
Hemocytes , Moths , Animals , Insect Proteins/genetics , Larva , Zea mays
5.
Insect Biochem Mol Biol ; 118: 103314, 2020 03.
Article in English | MEDLINE | ID: mdl-31926881

ABSTRACT

C-type lectins participate in hemocytic encapsulation as pattern recognition receptors; however, the molecular mechanisms underlying their function remain unknown. In this study, we determined that the encapsulation-promoting function of a C-type lectin, IML-10, may be related to its interaction with hemocytes in the agricultural pest Ostrinia furnacalis. IML-10 possesses two carbohydrate-recognition domains (CRDs) containing EPN and QPD motifs with 4 and 6 conserved cysteine residues, respectively. IML-10 was found to mainly be secreted by the fat body into the larval plasma, and its expression was induced by Sephadex A-25 beads. Anti-IML-10 antibodies inhibited encapsulation-promoting function of IML-10 in the larval plasma. The encapsulation rate of Sephadex A-25 beads decreased from approximately 90%-30% when expression of IML-10 in O. furnacalis larvae was inhibited by RNAi. Moreover, the Sephadex bead-encapsulating ability of hemocytes decreased to almost zero in O. furnacalis larvae with IML-10 knocked out by CRISPR/Cas9, with IML-10 expression clearly decreasing compared to that of the control. Similar to the larval plasma, recombinant IML-10 promoted Sephadex bead encapsulation by hemocytes. Immunohistochemistry analysis showed that IML-10 was able to bind to the surface of both granulocytes and plasmatocytes but not to Sephadex beads as foreign objects. Furthermore, recombinant IML-10 promoted hemocyte aggregation but not adhesion. Therefore, we speculate that IML-10 binds to the surface of hemocytes to promote their aggregation and further improve their encapsulation capacity. These results contribute to clarifying the function of insect C-type lectins in encapsulation.


Subject(s)
Hemocytes/metabolism , Insect Proteins/genetics , Lectins, C-Type/genetics , Moths/physiology , Receptors, Pattern Recognition/metabolism , Animals , Insect Proteins/metabolism , Larva/metabolism , Lectins, C-Type/metabolism
6.
Metabolism ; 102: 154011, 2020 01.
Article in English | MEDLINE | ID: mdl-31734274

ABSTRACT

OBJECTIVE: The gut microbiota regulates thermogenesis to benefit metabolic homeostasis at least partially via its metabolite butyrate, and the underlying mechanisms of this regulation are still unclear. In this study, we aim to investigate the role of lysine specific demethylase (LSD1), a histone demethylase and important regulator of thermogenesis, in mediating gut microbial metabolite butyrate regulation of thermogenesis. METHODS: The antibiotic cocktail (ABX) was administrated to deplete gut microbiota. Adipose-specific LSD1 knockout mice (LSD1 aKO) were generated by crossing LSD1-lox/lox with adiponectin-cre mice and sodium butyrate and dietary fiber inulin was administrated through oral-gavage. Primary stromal vascular cells were isolated from adipose tissues and differentiated to adipocytes for studying butyrate effects on adipocyte thermogenesis. RESULTS: The antibiotic cocktail (ABX)-mediated depletion of the gut microbiota in mice downregulated the expression of LSD1 in both brown adipose tissue (BAT) and subcutaneous white adipose tissue (scWAT) in addition to uncoupling protein 1 (UCP1) and body temperature. Gavage of the microbial metabolite butyrate in ABX-treated mice reversed the thermogenic functional impairment and LSD1 expression. The adipose-specific ablation of LSD1 in mice attenuated the butyrate-mediated induction of thermogenesis and energy expenditure. Notably, our results showed that butyrate directly increased the expression of LSD1 and UCP1 as well as butyrate transporter monocarboxylate transporter 1 (MCT1) and catabolic enzyme acyl-CoA medium-chain synthetase 3 (ACSM3) in ex vivo cultured adipocytes. The inhibition of MCT1 blocked the effects of butyrate in adipocytes. Furthermore, the butyrate-mediated prevention of diet-induced obesity (DIO) through increased thermogenesis was attenuated in LSD1 aKO mice. Moreover, after gavaging HFD-fed mice with the dietary fiber inulin, a substrate of microbial fermentation that rapidly produces butyrate, thermogenesis in both BAT and scWAT was increased, and DIO was decreased; however, these beneficial metabolic effects were blocked in LSD1 aKO mice. CONCLUSIONS: Together, our results indicate that the microbial metabolite butyrate regulates thermogenesis in BAT and scWAT through the activation of LSD1.


Subject(s)
Adipose Tissue, Brown/drug effects , Adipose Tissue, White/drug effects , Butyrates/pharmacology , Gastrointestinal Microbiome/physiology , Histone Demethylases/physiology , Thermogenesis/drug effects , Thermogenesis/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Butyrates/metabolism , Cells, Cultured , Energy Metabolism/drug effects , Energy Metabolism/genetics , Gene Expression Regulation, Enzymologic/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Subcutaneous Fat/metabolism
7.
J Endocrinol ; 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31505463

ABSTRACT

Dietary fibers and their microbial fermentation products short chain fatty acids promote metabolic benefits, but the underlying mechanisms are still unclear. Recent studies indicate that intestinal lipid handling is under regulatory control and has broad influence on whole body energy homeostasis. Here we reported that dietary inulin and propionate significantly decreased whole body fat mass without affecting food intake in mice fed with chow diet. Meanwhile, triglyceride (TG) content was decreased and lipolysis genes expressions, such as adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL) and lysosomal acid lipase (LAL) were elevated in the jejunum and ileum of inulin and propionate treated mice. In vitro studies on Caco-2 cells showed propionate directly induced enterocyte ATGL, HSL and LAL gene expressions and decreased TG content, via activation of phosphorylation of AMP-activated protein kinase (p-AMPK) and lysine specific demethylase 1 (LSD1). Moreover, inulin and propionate could increase intestinal lipolysis under high fat diet (HFD) fed condition which contributed to the prevention of HFD-induced obesity. Our study suggests dietary fiber inulin and its microbial fermentation product propionate can regulate metabolic homeostasis through regulating intestinal lipid handling, which could provide a novel therapeutic target for both prevention and treatment of obesity.

8.
Onco Targets Ther ; 12: 2187-2191, 2019.
Article in English | MEDLINE | ID: mdl-30988623

ABSTRACT

BACKGROUND: CD19-modified CAR-T cells greatly influence responses in patients with relapsed/refractory acute lymphoblastic leukemia (ALL). However, recurrence remains a challenge, and reinfusion of CAR-T cells is not always effective. Sequential infusion of humanized CD19-modified and CD22-modified CAR-T cells may overcome this issue and induce remission. METHODS: We examined treatment with sequential infusion of humanized CD19-modified and CD22-modified CAR-T cells in a patient with relapsed ALL previously exposed to murine-derived anti-CD19 CAR-T cells. RESULTS: At ~6 weeks after treatment, repeated bone marrow smear and flow cytometry analysis revealed no lymphoblasts. CONCLUSION: Our results suggest that sequential infusion of humanized CD19-modified and CD22-modified CAR-T cells is a valuable option for relapsed patients with prior infusion of murine-derived, CD19-directed CAR-T cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...