Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 31(5): 1505-1510, 2020 May.
Article in Chinese | MEDLINE | ID: mdl-32530227

ABSTRACT

We analyzed the phylogenetic structure of trees within six diameter classes (1-2, 2-4, 4-7, 7-11, 11-16, >16 cm) in quadrats with different size of 5 m×5 m,10 m×10 m, 20 m×20 m, 50 m×50 m, 100 m×100 m in a Abies georgei var. smithii community in a 4 hm2 stem-mapping plot located in subalpine dark coniferous forest of Sygera Mountains, southeast Tibet. In various spatial scales, both net relatedness index (NRI) and nearest taxon index (NTI) of the community were larger than zero, indicating a clustered phylogenetic structure with the largest clustering intensity at small spatial scale (5 m×5 m). Community of small-size classes were phylogenetically clustering. In large-size classes (DBH>7 cm) phylogenetic over dispersion became more common, with dispersion increased with increasing tree size under all spatial scales. The intensity of phylogenetic clustering in young trees increased with increasing spatial scales, while the intensity of over dispersion in large trees (DBH>7 cm) increased with spatial scale. Our results suggested that environmental filtering in small-size trees and competitive exclusion in large-size trees might be the main ecological processes driving community assembly in this region.


Subject(s)
Abies , China , Forests , Phylogeny , Tibet
2.
Ying Yong Sheng Tai Xue Bao ; 26(6): 1617-24, 2015 Jun.
Article in Chinese | MEDLINE | ID: mdl-26572011

ABSTRACT

In this study, based on a 4 hm2 stem-mapping plot, we analyzed spatial distributions of Abies georgei var. smithii, the dominant species in forest of Sygera Mountains in southeast Tibet, China. Pair-correlation function was used to characterize univariate spatial point patterns of three size classes of the population and bivariate spatial patterns between those and different sizes of dead wood. A. georgei var. smithii population was characterized by reverse J-shaped DBH distribution, indicating an increasing population. Saplings of the population were spatially obviously aggregated at the small scales (0-7 m), and mid-sized trees and large-sized trees of the population were randomly or uniformly distributed. The aggregation intensities of A. georgei var. smithii decreased with the increasing diameter classes and spatial scales. Saplings and mid-sized trees were significantly and negatively associated with large-sized trees at the small scales (0-35 and 0-30 m), but the associations reversed at the large scales (45-100 and 80-100 m). In addition, with the increasing age difference between diameter classes of the population, the intensities of positive or negative correlations increased. Spatial associations between saplings and dead large-sized trees, and between mid-sized trees and dead large-sized trees were negative at the small scales (0-34 and 5-27 m), but positive at the large scales (49-100 and 73-100 m). This suggested that released niche space due to dead large-sized trees is not enough to weaken their negative impacts on saplings. We concluded that self-thinning effect and Janzen-Connell hypothesis may be the main mechanisms for the spatial pattern formation of A. georgei var. smithii population.


Subject(s)
Abies/growth & development , Forests , Spatial Analysis , Plant Stems , Tibet , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...