Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 668: 98-109, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38670000

ABSTRACT

Developing cost-effective monolith catalyst with superior low-temperature activity is critical for oxidative efficacious removal of industrial volatile organic compounds (VOCs). However, the complexity of the industrial flue gas conditions demands the need for high moisture tolerance, which is challenging. Herein, CoMn-Metal Organic Framework (CoMn-MOF) was in situ grown on Ni foam (NiF) at room temperature to synthesize the cost-effective monolith catalyst. The optimized catalyst, Co1Mn1/NiF, exhibited excellent performance in toluene oxidation (T90 = 239 °C) due to the substitution of manganese into the cobalt lattice. This substitution weakened the Co-O bond strength, creating more oxygen vacancies and increasing the active oxygen species content. Additionally, experimentally and computationally evidence revealed that the mutual inhibiting effect of three typical aromatic hydrocarbons (benzene, toluene and m-xylene) over the Co1Mn1/NiF catalyst was attributed to the competitive adsorption occurring on the active site. Furthermore, the Co1Mn1/NiF catalyst also presents outstanding water resistance, particularly at a concentration of 3 vol%, where the activity is even enhanced. This was attributed to the lower water adsorption and dissociation energy derived from the interaction between the bimetals. Results demonstrate that the dissociation of water vapor enables more reactive oxygen species to participate in the reaction which reduces the formation of intermediates and facilitates the reaction. This investigation provides new insights into the preparation of oxygen vacancy-rich monolith catalysts with high water resistance for practical applications.

2.
JACS Au ; 3(11): 3076-3088, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38034975

ABSTRACT

Light alkanes make up a class of widespread volatile organic compounds (VOCs), bringing great environmental hazards and health concerns. However, the low-temperature catalytic destruction of light alkanes is still a great challenge to settle due to their high reaction inertness and weak polarity. Herein, a Co3O4 sub-nanometer porous sheet (Co3O4-SPS) was fabricated and comprehensively compared with its bulk counterparts in the catalytic oxidation of C3H8. Results demonstrated that abundant low-coordinated Co atoms on the Co3O4-SPS surface boost the activation of adsorbed oxygen and enhance the catalytic activity. Moreover, Co3O4-SPS has better surface metal properties, which is beneficial to electron transfer between the catalyst surface and the reactant molecules, promoting the interaction between C3H8 molecules and dissociated O atoms and facilitating the activation of C-H bonds. Due to these, Co3O4-SPS harvests a prominent performance for C3H8 destruction, 100% of which decomposed at 165 °C (apparent activation energy of 49.4 kJ mol-1), much better than the bulk Co3O4 (450 °C and 126.9 kJ mol-1) and typical noble metal catalysts. Moreover, Co3O4-SPS also has excellent thermal stability and water resistance. This study deepens the atomic-level insights into the catalytic capacity of Co3O4-SPS in light alkane purification and provides references for designing efficacious catalysts for thermocatalytic oxidation reactions.

3.
ACS Appl Mater Interfaces ; 14(32): 36536-36550, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35917445

ABSTRACT

In order to enhance the catalytic activity and improve the stability of Mn-Al oxides in acetone oxidation, it is interesting to have found that modulating and accelerating the rate-limiting step by Al substitution rather than just mixing of Mn and Al is crucial for hydrocarbon efficient catalytic destruction. Here, a series of Mn-Al oxides with different Al substitution ratios were prepared by a scalable and facile hydrothermal-redox strategy. The reaction rate, selectivity, and stability of the representative α-MnO2 catalyst in acetone oxidation can be remarkably promoted by simple replacing of the partial framework Mn with Al, which changes the rate-limiting step from acetic acid dissociation to ethanol decomposition accelerated by H2O molecules. Among them, MnAl0.5 displays the best catalytic performance with 90% of acetone converted at just 165 °C and a remarkable CO2 yield. DFT results suggest that the py and px orbitals of the O element take part in the formation of the carbonyl group when the intermediate of removing H* from ethanol reacts with the hydroxyl group of H2O. The dxz orbital of Mn with p-electron of Al plays a vital role in the rate-limiting step. The work provides new insights into engineering catalysts for industrial VOC efficient and economical mineralization.

4.
Angew Chem Int Ed Engl ; 61(28): e202200763, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35347821

ABSTRACT

The development of highly active single-atom catalysts (SACs) and identifying their intrinsic active sites in oxidizing industrial hazardous hydrocarbons are challenging prospects. Tuning the electronic metal-support interactions (EMSIs) is valid for modulating the catalytic performance of SACs. We propose that the modulation of the EMSIs in a Pt1 -CuO SAC significantly promotes the activity of the catalyst in acetone oxidation. The EMSIs promote charge redistribution through the unified Pt-O-Cu moieties, which modulates the d-band structure of atomic Pt sites, and strengthens the adsorption and activation of reactants. The positively charged Pt atoms are superior for activating acetone at low temperatures, and the stretched Cu-O bonds facilitate the activation of lattice oxygen atoms to participate in subsequent oxidation. We believe that this work will guide researchers to engineer efficient SACs for application in hydrocarbon oxidation reactions.

5.
J Colloid Interface Sci ; 612: 504-515, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35007876

ABSTRACT

Realizing the simultaneous adsorption and activation of O2 and reactants over supported noble metal catalysts is crucial for the oxidation of organic hydrocarbons. Herein, we report a facile one-step ethylene glycol reduction method to synthesize difunctional Au(OH)Kx sites, which were anchored on a hierarchical hollow MFI support and adopted for acetone decomposition. The alkali ion-associated adjacent surface hydroxyl groups were coordinated with Au nanoparticles, resulting in partially oxidized Au1+ sites with improved dispersion. The results obtained from exclusive ex situ and in situ experiments illustrated that the proper content of K and hydroxyl groups significantly enhanced the adsorption of surface O2 and acetone molecules around the Au sites simultaneously, whereas the excess K species inhibited the catalytic performance by blocking the pore structure and decreasing the acidity of catalysts. The Au(OH)K0.7/h-MFI catalyst exhibited the highest efficiency for acetone oxidation, over which 1500 ppm acetone can be completely oxidized at just 280 °C with an extremely low activation energy of 32.5 kJ mol-1. The carbonate species were detected as the main intermediates during acetone decomposition over the difunctional Au(OH)Kx sites through a Langmuir - Hinshelwood (L - H) mechanism. This finding paves the way for designing and constructing efficient functional active sites for the complete oxidation of hydrocarbons.

6.
ACS Appl Mater Interfaces ; 14(1): 990-1001, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34958541

ABSTRACT

Achieving excellent efficiency to mineralize volatile organic compounds (VOCs) under nonthermal plasma catalysis (NTP-catalysis) systems tremendously relies on the catalyst design. Herein, we report a dual-template strategy for synthesizing a core-shell structured nitrogen-enriched hollow hybrid carbon (N-HHC) by a facile pyrolysis of a Mn-ZIF-8@polydopamine core-shell precursor. N-HHC exhibits a remarkable plasma synergy effect and superior degradation efficiency for toluene (up to 90% with a specific input energy of 281 J/L), excellent CO2 selectivity (>45%), and byproduct-inhibiting capability. Such outstanding functionality of the developed N-HHC is uniquely attributed to its hollow multistage and channeling structure, high concentration of O3-decomposing species (pyrrolic and oxide pyridinic-N), and abundant ZnO active sites. Shedding light on an efficient synthetic strategy for designing an advanced nanocatalyst with enhanced VOC destruction in the NTP-catalysis system, the present results could be extended to design other N-doped metal/metal oxide-decorated hollow porous carbons for environment-related applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...